author: Nathaniel Evans
email: evansna@ohsu.edu
This will run many single-run analysis
and save the results to disk.
$ ./HER2_sensitivity_runs.sh
NOTE: variables within HER2_sensitivity_runs.sh
will need to be modified.
$ python HER2_classifier.py --data ./HER2_SKBR3_data_6-7-21/ --drug neratinib --sensitive_line WT --resistant_line T798I --load normalized --nclus 15 --out ./output/ --resample_sz 100 --burnin 0
The outputs of Samuel's processing can be extracted to the necessary file structure using:
$ ./HER2_extract_data2.sh
NOTE: variables within HER2_extract_data2.sh
will need to be changed for each run.
directory to data files, should be organized as:
/data_dir/
/dataset_name/
/normalized
-> clover_all_cell.csv
-> mscarlet_all_cell.csv
/raw
-> clover_all_cell.csv
-> mscarlet_all_cell.csv
Can be trastuzumab or neratinib
The cell line to use as sensitive labels [WT]
The cell line to use as resistant labels [T798I, ND611]
Whether to use the normalized
or raw
data.
The number of clusters to use.
Directory path to save results to
length of time series to resample to
number of initial time points to ignore in analysis
Use HER2_sensitivity_results_analysis [<drug>].ipynb
to aggregate the results of the sensitivity analysis, make concordance calls, and save results to file.
$ conda env create --file environment.yml