/tsunami-models

Primary LanguageTeXCreative Commons Attribution 4.0 InternationalCC-BY-4.0

Tsunami Models List

This list is meant to be a community effort to both list and categorize the available tsunami models currently maintained and publicly (openly) available. This list was started based on a review paper that is currently itself under review. Check back soon for a draft and how to contribute.

Citation: Marras, S.; Mandli, K.T. Modeling and Simulation of Tsunami Impact: A Short Review of Recent Advances and Future Challenges. Geosciences (2021) 11, 5.

Model SpaceDim. Equations Turbul. Wavebreak. FSI MP SD
GeoCLAW[1] 1D/2D/2D(1/2) SW No No No No FV
NUMA2D[2][3] 1D/2D SW No No No No SE/DG
MOST[4] 1D/2D SW No No No No FD
Cliffs[5] 1D/2D SW No No No No FD
Tsunami-HySEA[6a,b,c] 1D/2D SW/B No Yes No No FV
Multilayer-HySEA[7,8] 1D/2D(1/2) SW/B No Yes No Yes FV
TUNAMI[9,10] 1D/2D SW No No No No FD
NAMI-DANCE[11] 1D/2D SW No No No No FD
COMCOT[12] 1D/2D SW No No No No FD
SELFE[13] 1D/2D SW No No No No FE
TsunAWI[14] 1D/2D SW No No No No FE
TsunaFlash[15] 1D/2D SW No No No No FE/DG
VOLNA[16,17] 1D/2D SW No No No No FV
Delft3D[18] 1D/2D SW No No No Yes FD
Basilisk[19-21] 2D/3D SGN No Yes No Yes FV
BOSZ[22] 1D/2D B No No No No FV/FD
Celeris[23] 1D/2D B No No No No FV
FUNWAVE[24,25] 1D/2D B No No No No FV/FD
pCOULWAVE[26,27] 2D/3D B Yes No No No FV
NEOWAVE[28] 2D B No No No No FD
GPUSPH[29] 3D SPH No Yes No No SPH
SCHISM[30] 1D/2D/3D N-S RANS Yes No No FE/FV
COBRAS[31,32] 2D/3D N-S RANS Yes No No FD
TSUNAMI3D[33,34] 2D/3D N-S RANS Yes No No FD
waves2FOAM[35-37] 2D(tsunami) N-S RANS Yes No No FV
NHWAVE[38] 2D/3D N-S LES Yes Yes Yes FV/FD
Alya[39,40] 2D/3D N-S LES/WM/RANS Yes Yes Yes FE
FVCOM [41,42] 3D N-S Yes Yes No No FV

References

[1] Berger, M.; George, D.; LeVeque, R.; Mandli, K. The GeoClaw software for depth-averaged flows withadaptive refinement.Adv. Water Res. 2011,34, 1195–1206.

[2] Marras, S.; Kopera, M.; Giraldo, F.X. Simulation of Shallow Water Jets with a Unified Element-basedContinuous/Discontinuous Galerkin Model with Grid Flexibility on the Sphere.Q. J. Roy. Meteor. Soc. 2015,141, 1727–1739.

[3] Marras, S.; Kopera, M.; Constantinescu, E.; Suckale, J.; Giraldo, F. A Residual-based Shock CapturingScheme for the Continuous/Discontinuous Spectral Element Solution of the 2D Shallow Water Equations.Adv. Water Res. 2018,114, 45–63.

[4] Titov, V.V.; Gonzalez, F. Implementation and testing of the Method Of Splitting Tsunami (MOST) model.NOAA Technical Memorandum ERL PMEL-112 1927, NOAA, Seattle, WA,USA. Technical report, 1997.

[5] Tolkova, E. Land–water boundary treatment for a tsunami model with dimensional splitting.Pure Appl.Geophys. 2014,171, 2289–2314.

[6a] Macías, J.; Castro, M.; Ortega, S.; Escalante, C.; González-Vida, J. Performance Benchmarking of Tsunami-HySEA Model for NTHMP’s Inundation Mapping Activities. Pure Appl. Geophys. 2017, 174, 3147–3183.

[6b] Macías, J.; Castro, M.; Ortega, S.; González-Vida, J. Performance assessment of Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Field cases. Ocean Modelling 2020, 152, 101645.

[6c] Macías, J.; Castro, M.; Escalante, C. Performance assessment of the Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Laboratory data. Coastal Engineering 2020, 158, 103667.

[7] Macías, J.; Escalante, C.; Castro, M.J. Multilayer-HySEA model validation for landslide generated tsunamis.Part I Rigid slides.Natural Hazards and Earth System Sciences Discussions. 10.5194/nhess-2020-1712020, 2020, 1–33.

[8] Macías, J.; Escalante, C.; Castro, M.J. Multilayer-HySEA model validation for landslide generated tsunamis.Part II Granular slides.Natural Hazards and Earth System Sciences Discussions, 10.5194/nhess-2020-1722020, 2020, 1–34.

[9] Imamura, F. Tsunami numerical simulation with the staggered leap-frog scheme (numerical code ofTUNAMI-N1 and N2), 1989.

[10] Imamura, F.; Yalciner, A.; Ozyurt, G. Tsunami Modelling Manual. Technical report, 2006.

[11] Yalciner, A.; Pelinovsky, E.; Zaytsev, A.; Kurkin, A.; Ozer, C.; Karakus, H. NAMI DANCE Manual.Technical report, METU, Civil Engineering Department, Ocean Engineering Research Center, Ankara,Turkey, 2006.

[12] Wang, X. User manual for COMCOT version 1.7. Technical report, 2009.

[13] Zhang, Y.; Baptista, A. An efficient and robust tsunami model on unstructured grids. Part I: inundationbenchmarks.Pure Appl. Geophys. 2008,165, 2229–2248.

[14] Harig, S.; Chaeroni, X.; Pranowo, W.; Behrens, J. Tsunami simulations on several scales: comparison ofapproaches with unstructured meshes and nested grids.Ocean Dyn. 2008,58, 429–440.

[15] Pranowo, W.; Behrens, J.; Schlicht, J.; Ziemer, C.Adaptive mesh refinement applied to tsunamimodeling: TsunaFLASH. In Proc. Int. Conf. on Tsunami Warning (ICTW) (ed. H Adrianto). Jakarta,Indonesia: State Ministry of Research and Technology, Republic of Indonesia (RISTEK). Available at:http://hdl.handle.net/10013/epic.32425.d001, 2008.

[16] Dutykh, D.; Poncet, R.; Dias, F. The VOLNA code for the numerical modeling of tsunami waves: generation,propagation and inundation.Eur. J. Mech. B/Fluids 2011,30, 598–615.

[17] Reguly, I.Z.; Giles, D.; Gopinathan, D.; Quivy, L.; Beck, J.H.; Giles, M.B.; Guillas, S.; Dias, F. TheVOLNA-OP2 tsunami code (version 1.5).Geoscientific Model Development 2018, 11, 4621–4635.

[18] Roelvink, J.; Van Banning, G.Design and development of DELFT3D and application to coastalmorphodynamics.Oceanographic Lit. Review 1995,42, 925–

[19] Popinet, S. Basilisk: simple abstractions for octree-adaptive scheme.SIAM conference on ParallelProcessing for Scientific Computing. April 12-15; 2016.

[20] Popinet, S. A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations.Journal ofComputational Physics 2015,302, 336 – 358. doi:https://doi.org/10.1016/j.jcp.2015.09.009

[21] Popinet, S. A vertically-Lagrangian, non-hydrostatic, multilayer model for multiscale free-surface flows.Journal of Computational Physics 2020,418, 109609. doi:https://doi.org/10.1016/j.jcp.2020.109609.

[22] Roeber, V.; Cheung, K. Boussinesq-type model for energetic breaking waves in fringing reef environment.Coast. Eng. 2012,70, 1–20.

[23] Tavakkol, S.; Lynett, P. Celeris: A GPU-accelerated open source software with a Boussinesq-type wavesolver for real-time interactive simulation and visualization.Computer Physics Communications 2017,217, 117 – 127.

[24] Kennedy, A.; Chen, Q.; Kirby, J.; Dalrymple, R. Boussinesq modeling of wave transformation, breakingand runup, part I: 1D.J. Waterw. Port Coast. Ocean Eng. 2000,126, 39–47.

[25] Shi, F.; Kirby, J.; Harris, J.; Geiman, J.; Grilli, S. A high-order adaptive time-stepping TVD solver forBoussinesq modeling of breaking waves and coastal inundation.Ocean Model. 2012,43-44, 36–51

[26] Lynett, P.; Wu, T.; P.L.F., L. Modeling wave runup with depth-integrated equations.Coast. Eng. 2002, 46:89–107.

[27] Kim, D.; Lynett, P. Turbulent mixing and passive scalar transport in shallow flows.Phys. Fluids 2011,23, 016603.

[28] Yamazaki, Y.; Kowalik, Z.; Cheung, K. Depth-integrated, non-hydrostatic model for wave breaking andrun-up.Int. J. Numer. Meth. Fluids 2009,61, 473–497.

[29] Wei, Z.; Dalrympl, R.; Hérault, A.; Bilotta, G.; Rustico, E.; Yeh, H. SPH modeling of dynamic impact oftsunami bore on bridge pier.Coast. Eng. 2015,104, 26–42.

[30] Zhang, Y.; Ye, F.; Stanev, E.; Grashorn, S. Seamless cross-scale modeling with SCHISM, Ocean Modelling.Ocean Model. 2016,102, 64–81.

[31] Lin, P.; Liu, P. A numerical study of breaking waves in the surf zone.J. Fluid Mech. 1998,358, 239–264.

[32] Lin, P.; Liu, P. Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking wavesin surf zone.J. Geophys. Res. 1998,103 C8

[33] Horrillo, J.; Wood, A.; Kim, G.; Parambath, A. A simplified 3-D /Navier–Stokes numerical model forlandslide tsunami: Application to the Gulf of Mexico.J. Geophys. Res./Oceans 2013,118, 6934–6950.

[34] Horrillo, J.; Grilli, S.; Nicolsky, D.; Roeber, V.; Zhang, J. Performance benchmarking tsunami models forNTHMP’s inundation mapping activities.Pure Appl. Geophys. 2015,172, 869–884

[35] Jacobsen, N.; Fuhrman, D.; Fredsoe, J. A wave generation toolbox for the open-source CFD library:OpenFOAM (R).Int. J. Numer. Methods Fluids 2012,70, 1073–1088.

[36] Larsen, B.; Fuhrman, D. Full-scale CFD simulation of tsunamis. Part 1: Model validation and run-up.Coastal Engineering 2019,151

[37] Larsen, B.; Fuhrman, D. Full-scale CFD simulation of tsunamis. Part 2: Boundary layers and bed shearstresses.Coastal Engineering 2019,151.

[38] Ma, G.; Shi, F.; Kirby, J. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes.Ocean Modeling 2012,43-44, 22–35

[39] Vázquez, M.; Houzeaux, G. Alya: Multiphysics Engineering Simulation Towards Exascale.J. Comput. Sci 2016.

[40] Mukherjee, A.; Cajas, J.; Houzeaux, G.; Lehmkuhl, O.; Vázquez, M.; Suckale, J.; Marras, S. Using fluid-structure interaction to evaluate the energy dissipation of a tsunami run-up through idealized flexible trees. sciencesconf.org:parcfd2020:3202002020.

[41] Chen, C.; Liu, H.; Beardsley, R. C. An unstructured grid, finite-volume, three dimensional, primitive equations ocean model: application to coastal ocean and estuarie. J. Atmos. Ocean Technol. 2003, 20 159-186

[42] Chen, C.; Lai, Z.; Beardsley, R. C.; Sasaki, J.; Lin, J.; Lin, H.; Ji, R.; Sun, Y. The March 11, 2011 Tohoku M9.0 Earthquake-induced Tsunami and Coastal Inundation along the Japanese Coast: A Model Assessment. Progress in Oceanography 2014, 123 84-104