/guided-diffusion

Primary LanguagePythonMIT LicenseMIT

Conditional Clip-Guided Diffusion

This project is based on Clip-Guided Diffusion by RiversHaveWings

With minor architectural changes to the DDPM model it's possible to generate images conditioned on VQ embeddings. This DDPM model can replace the decoder of any transformer model that currently uses VQVAE or VQGAN, yielding about a one scale-factor improvement in image quality. Pretrained models for DALLE-pytorch and Ru-DALLE are provided.

more details at this github discussion

Sample generations

images from Unsplash

reconstruction from 256x16x16 latents (best out of 8)

Ground truth GumbelVQ f8 CCGD CCGD + clip CCGD + clip CCGD + clip
      Prompt: a girl Prompt: a smiling girl Prompt: a girl with blonde hair
      Prompt: a DSLR camera Prompt: a Canon DSLR camera Prompt: a Nikon DSLR camera
      Prompt: a cute dog Prompt: a vicious wolf Prompt: a cat

it can also be used to "clean up" images created by other VAE models

OpenAI VAE (32x32 latent) CCGD re-generated VQGAN f16 16k (16x16 latent) CCGD re-generated VQGAN f16 1k (16x16 latent) CCGD re-generated

Download models

https://dall-3.com/models/guided-diffusion/256/model-latest.pt

Super-resolution, and other experimental files: https://dall-3.com/models/guided-diffusion/

Installation

You will need to install CLIP and DALLE-pytorch

then clone this repository and

pip install -e .

Sampling from dall-3 models

To sample from these models, you can use the sample.py, and super_res.py scripts in the root directory.

# first download the GumbelVQ model
mkdir -p models/vqgan_gumbel_f8/configs && wget 'https://heibox.uni-heidelberg.de/f/b24d14998a8d4f19a34f/?dl=1' -O 'models/vqgan_gumbel_f8/configs/model.yaml' 
mkdir -p models/vqgan_gumbel_f8/checkpoints && wget 'https://heibox.uni-heidelberg.de/f/34a747d5765840b5a99d/?dl=1' -O 'models/vqgan_gumbel_f8/checkpoints/last.ckpt' 

# download latest diffusion model
wget https://dall-3.com/models/guided-diffusion/256/model-latest.pt -O 'models/model-latest.pt'

# run diffusion (input can be image or npy file - a .npy file should contain the image tokens)
python sample.py --model_size 256 --input 0.npy --text "your prompt here"

# 4x super resolution to 1024px
wget https://dall-3.com/models/guided-diffusion/64_256/model016000.pt -O 'models/model-super-res.pt'
python super_res.py --output_size 1024 --input input.png

Sampling from ru-dalle tokens

# ru-dalle diffusion (input can be image or npy file - a .npy file should contain the image tokens from ru-dalle. This needs ru-dalle to be installed)
mkdir -p models
wget https://dall-3.com/models/guided-diffusion/ru-dalle/model-ru-latest.pt -O 'models/model-ru-latest.pt'
python ru.py --input 0.npy

Training

You can use the original OpenAI models to train from scratch, or continue training from the models in this repo by putting the modelXXX, emaXXX and optXXX files in the OPENAI_LOGDIR directory

note the new flags --emb_condition and --lr_warmup_steps

  • 64x64 model:
MODEL_FLAGS="--attention_resolutions 32,16,8 --emb_condition True --class_cond False --diffusion_steps 1000 --dropout 0.1 --image_size 64 --learn_sigma True --noise_schedule cosine --num_channels 192 --num_head_channels 64 --num_res_blocks 3 --resblock_updown True --use_new_attention_order True --use_fp16 True --use_scale_shift_norm True"
TRAIN_FLAGS="--lr 1e-4 --lr_warmup_steps 1000 --batch_size 70 --microbatch 35 --log_interval 1 --save_interval 2000 --resume_checkpoint models/64x64_diffusion.pt"
export OPENAI_LOGDIR=./64_logs/
mpiexec -n 4 python scripts/image_gumbel_train.py --data_dir ./path/to/data/ $MODEL_FLAGS $TRAIN_FLAGS
  • 128x128 model:
MODEL_FLAGS="--attention_resolutions 32,16,8 --emb_condition True --class_cond False --diffusion_steps 1000 --image_size 128 --learn_sigma True --noise_schedule linear --num_channels 256 --num_heads 4 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
TRAIN_FLAGS="--lr 1e-4 --lr_warmup_steps 1000 --lr_warmup_steps 1000 --batch_size 66 --microbatch 11 --log_interval 1 --save_interval 1000 --resume_checkpoint models/128x128_diffusion.pt"
export OPENAI_LOGDIR=./128_logs/
mpiexec -n 4 python scripts/image_gumbel_train.py --data_dir ./path/to/data/ $MODEL_FLAGS $TRAIN_FLAGS
  • 256x256 model:
MODEL_FLAGS="--attention_resolutions 32,16,8 --emb_condition True --class_cond False --diffusion_steps 1000 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
TRAIN_FLAGS="--lr 1e-4 --lr_warmup_steps 1000 --batch_size 64 --microbatch 4 --log_interval 1 --save_interval 500 --resume_checkpoint models/256x256_diffusion_uncond.pt"
export OPENAI_LOGDIR=./256_logs/
mpiexec -n 4 python scripts/image_gumbel_train.py --data_dir ./path/to/data/ $MODEL_FLAGS $TRAIN_FLAGS
  • 64x64 -> 256x256 model:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --large_size 256  --small_size 64 --learn_sigma True --noise_schedule linear --num_channels 192 --num_heads 4 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
TRAIN_FLAGS="--lr 1e-4 --lr_warmup_steps 1000 --batch_size 64 --microbatch 4 --log_interval 1 --save_interval 1000 --resume_checkpoint models/64_256_upsampler.pt"
export OPENAI_LOGDIR=./64_256_logs/
mpiexec -n 4 python scripts/super_res_train.py --data_dir ./path/to/data/ $MODEL_FLAGS $TRAIN_FLAGS

for the dvae models it's the same as above, except use scripts/image_dvae_train.py

to resume training the models in this repo, use --resume_checkpoint OPENAI_LOGDIR/modelXXX.pt (the current step, optimizer and ema checkpoints are inferred from the filename)