Roadmap 0.1.0-0.3.0
BERENZ opened this issue · 1 comments
BERENZ commented
The initial version of the package should have:
Version 0.1.0
- Mass imputation -- families:
gaussian
,binomial
,Gamma
,inverse.gaussian
,poisson
,quasi*
andMASS::negative.binomial
.
- Estimator: using model based approach (
stats::glm
andMASS::glm.nb
) - Estimator: using predictive mean matching (
RANN::nn2
) - Variance estimator: Kim et al. (2021), p. 950.
Literature:
- Kim, J. K., Park, S., Chen, Y., & Wu, C. (2021). Combining non-probability and probability survey samples through mass imputation. Journal of the Royal Statistical Society. Series A: Statistics in Society, 184(3), 941–963. https://doi.org/10.1111/rssa.12696
Version 0.2.0
- Propensity score -
binomial()
withlogit
,probit
andcloglog
links
- unit-level survey data is available
- only population totals are available
Literature:
- Chen, Y., Li, P., & Wu, C. (2020). Doubly Robust Inference With Nonprobability Survey Samples. Journal of the American Statistical Association, 115(532), 2011–2021. https://doi.org/10.1080/01621459.2019.1677241
Version 0.3.0
- Doubly robust
- standard : Chen, Li and Wu (2020)
- with minimization of asymptotic bias: Yang, Kim and Rui (2020)
Literature:
- Chen, Y., Li, P., & Wu, C. (2020). Doubly Robust Inference With Nonprobability Survey Samples. Journal of the American Statistical Association, 115(532), 2011–2021. https://doi.org/10.1080/01621459.2019.1677241
- Kim, J. K., & Wang, Z. (2018). Sampling Techniques for Big Data Analysis. International Statistical Review, 1, 1–15. https://doi.org/10.1111/insr.12290
- Yang, S., Kim, J. K., & Rui, S. (2020). Doubly robust inference when combining probability and non-probability samples with high dimensional. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 82(2), 445–465. https://doi.org/10.1111/rssb.12354