/PythonMachineLearning

Practice and tutorial-style notebooks covering wide variety of machine learning techniques

Primary LanguageJupyter NotebookBSD 2-Clause "Simplified" LicenseBSD-2-Clause

Python Machine Learning Notebooks

Essential codes for jump-starting machine learning/data science with Python.

You can start with this article that I wrote in Heartbeat magazine (on Medium platform):

Essential tutorial-type notebooks on Pandas and Numpy

Jupyter notebooks covering a wide range of functions and operations on the topics of NumPy, Pandans, Seaborn, matplotlib etc.

Tutorial-type notebooks covering regression, classification, clustering, dimensionality reduction, and some basic neural network algorithms

Regression

  • Simple linear regression with t-statistic generation

  • Polynomial regression with how to use scikit-learn pipeline feature (check the article I wrote on Towards Data Science)
  • Decision trees and Random Forest regression (showing how the Random Forest works as a robust/regularized meta-estimator rejecting overfitting)

Classification

  • Logistic regression/classification

* Naive Bayes classification

Clustering

  • K-means clustering
  • Affinity propagation (showing its time complexity and the effect of damping factor)
  • Mean-shift technique (showing its time complexity and the effect of noise on cluster discovery)
  • DBSCAN (showing how it can generically detect areas of high density irrespective of cluster shapes, which the k-means fails to do)
  • Hierarchical clustering with Dendograms showing how to choose optimal number of clusters

Dimensionality reduction

  • Principal component analysis

Deep Learning/Neural Network

  • Demo notebook to illustrate the superiority of deep neural network for complex nonlinear function approximation task.
  • Step-by-step building of 1-hidden-layer and 2-hidden-layer dense network using basic TensorFlow methods

Random data generation using symbolic expressions


You can add me on LinkedIn here