We express our highest respect and gratitude for the open-source work of BasicSR.
Anaconda is suggested. Install the necessary packages:
conda create -n lqct_sr_dn python=3.9.7
conda activate lqct_sr_dn
pip install -r requirements.txt
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install -e .
You should prepare your data in this way:
data_rootdir
- dataset_name
- img
- hr_nd
- train
- val
- test
- lr_ld
- x2
- train
- train_avg
- val
- val_avg
- test
- test_avg
- x4
- train
- train_avg
- val
- val_avg
- test
- test_avg
- lr_nd
- x2
- train
- val
- test
- x4
- train
- val
- test
-mask
- hr
- train
- val
- test
- x2
- train
- val
- test
- x4
- train
- val
- test
To train the network, you should modify the config files in "options/train" folder first.
Train the network with the scale factor of 2:
python basicsr/train.py -opt options/train/sr_dn_x2.yml
Train the network with the scale factor of 4:
python basicsr/train.py -opt options/train/sr_dn_x4.yml
To test the network, you should modify the config files in "options/test" folder first.
Test the network with the scale factor of 2:
python basicsr/train.py -opt options/test/sr_dn_x2.yml
Test the network with the scale factor of 4:
python basicsr/train.py -opt options/train/sr_dn_x4.yml