This is an unofficial PyTorch implementation of sngan_projection
- PyTorch1.0
- numpy
- scipy
- tensorboardX
- tqdm
- torchviz pip install torchviz and graphviz sudo apt-get install graphviz
There are two ways to run the training script:
- Run the script directly (We recommend this way):
python3 main.pyorpython main.py. In this way, the training parameters can be modified by modifying theparameter.pyparameter defaults.
| Parameters | Function |
|---|---|
| --version | Experiment name |
| --train | Set the model stage, Ture---training stage; False---testing stage |
| --experiment_description | Descriptive text for this experiment |
| --total_step | Totally training step |
| --batch_size | Batch size |
| --g_lr | Learning rate of generator |
| --d_lr | Learning rate of discriminator |
| --parallel | Enable the parallel training |
| --dataset | Set the dataset name,lsun,celeb,cifar10 |
| --cuda | Set GPU device number |
| --image_path | The root dir to training dataset |
| --FID_mean_cov | The root dir to dataset moments npz file |
We have reproduced the FID (in Cifar-10, best result is FID=17.2) result reported in the paper.
The convergence curve of FID is as follows:
200K:
500K:
600K:
800K:
1000K:




