These source code that summarizes the codes that I have gathered while attending Professor Sungho Kim's class (Yeungnam University, Digital Image Processing class) and my personal studies.
all of index have matlab code but some index have no result
1. Install Matlab
1.1 Basic Matrix
2. Image resolution
2.1. Image Resize with Interpolation
3. Blob Labeling
3.1. Noise Reduction
4. Intensity Transform
4.1 Histogram equalization
5. Spatial Filtering
5.1. Spatial Sharpening
6. Furier Series
6.1. Aliasing in Image Resizing
6.2 2-D DFT Fourier Spectrum
6.3 Phase Angles and The Reconstructed
6.4. Frequency Analysis
6.5. Steps for Filtering in the Frequency Domain
6.6. Image Low Pass Filter & High Pass Filter
7. Deep learning
Install Matlab
read Image and show
Image=imread('want_to_read.jpg');
imshow(Image);
title('want_to_read','fontsize',16);
Go 0. Outline
2.1 Image Resize with Interpolation
%builtin function
Image=imread('rice.png'); %load an gray image
Image_NN=imresize(Image,0.4,'nearest');
Image_BL=imresize(Image,0.4,'bilinear');
Image_BC=imresize(Image,0.4,'bicubic');
subplot(1,4,1); imshow(Image); title('origin');
subplot(1,4,2); imshow(Image_NN); title('NN');
subplot(1,4,3); imshow(Image_BL); title('bilinear');
subplot(1,4,4); imshow(Image_BC); title('bicubic');
Result
my impletation(resize func) is in directory source_code/myResizeNN or myResizeBil
Go 0. Outline
Result 1
Result 2
Go 0. Outline
4.1 Histogram equalization
Result
Go 0. Outline
Result 1
Result 2
Result 3
Go 0. Outline
Logic
Input
before shapen
Result 1
before shapen
Result 2
K=fspecial('gaussian',[5,5],1)
Kernel
Result 3
Go 0. Outline
make sine waves
combine each sine waves
sine waves to square waves
Go 0. Outline
6.1. Aliasing in Image Resizing
Input
Output
Go 0. Outline
6.2. 2-D DFT Fourier Spectrum
Result
Go 0. Outline
6.3. Phase Angles and The Reconstructed
my implement code: doesn't exist. The report exists.
but upload the correct code
Result
Go 0. Outline
6.5. Steps for Filtering in the Frequency Domain
Given an input image f(x,y) of size MxN, obtain thepadding parameters P and Q : Output1
Form a padded image, fp(x,y) of size PxQ by appending the necessary number of zeros to f(x,y): Output2
Multiply fp(x,y) by (-1)x+y to center its transform: Output3
Input
Output1
Output2
Output3
Compute the DFT, F(u,v) of the image from step 3: Output4
Generate a real, symmetric filter function*, H(u,v), of size PxQ with center at coordinates (P/2, Q/2): Output5
Form the product G(u,v) = H(u,v)F(u,v) using array multiplication: Output6
Obtain the processed image
: Output7
Output4
Output5
Output6
Output7
Obtain the final processed result, g(x,y), by extracting the MxN region from the top, left quadrant of gp(x,y)
Cut-off Frequency 200: Output8
Cut-off Frequency 100: Output9
Cut-off Frequency 5: Output10
Space domain filtering(Output11) vs Frequency domain filtering(Output12)
Output11
Output12
Go 0. Outline
6.6. Image Low Pass Filter & High Pass Filter
Exercise 1: Object Detection
Exercise 2: Regression
Estimating real number given vector data
Exercise 3: Transfer Learning using Alexnet
Introduce my project Demo video --> [link]
Go 0. Outline
searching at matlab, nanhee kim's and sungho kim class
myimg: nanhee kim
others: matlab and prof.sungho kim
Nanhee Kim / @nh9k