This repository provides UNOFFICIAL Parallel WaveGAN, MelGAN, and Multi-band MelGAN implementations with Pytorch.
You can combine these state-of-the-art non-autoregressive models to build your own great vocoder!
Please check our samples in our demo HP.
Source of the figure: https://arxiv.org/pdf/1910.11480.pdf
The goal of this repository is to provide real-time neural vocoder, which is compatible with ESPnet-TTS.
You can try the real-time end-to-end text-to-speech demonstration in Google Colab!
- 2020/05/29 (New!) VCTK, JSUT, and CSMSC multi-band MelGAN pretrained model is available!
- 2020/05/27 New LJSpeech multi-band MelGAN pretrained model is available!
- 2020/05/24 LJSpeech full-band MelGAN pretrained model is available!
- 2020/05/22 LJSpeech multi-band MelGAN pretrained model is available!
- 2020/05/16 Multi-band MelGAN is available!
- 2020/03/25 LibriTTS pretrained models are available!
- 2020/03/17 Tensorflow conversion example notebook is available (Thanks, @dathudeptrai)!
- 2020/03/16 LibriTTS recipe is available!
- 2020/03/12 PWG G + MelGAN D + STFT-loss samples are available!
- 2020/03/12 Multi-speaker English recipe egs/vctk/voc1 is available!
- 2020/02/22 MelGAN G + MelGAN D + STFT-loss samples are available!
- 2020/02/12 Support MelGAN's discriminator!
- 2020/02/08 Support MelGAN's generator!
This repository is tested on Ubuntu 16.04 with a GPU Titan V.
- Python 3.6+
- Cuda 10.0
- CuDNN 7+
- NCCL 2+ (for distributed multi-gpu training)
- libsndfile (you can install via
sudo apt install libsndfile-dev
in ubuntu) - jq (you can install via
sudo apt install jq
in ubuntu) - sox (you can install via
sudo apt install sox
in ubuntu)
Different cuda version should be working but not explicitly tested.
All of the codes are tested on Pytorch 1.0.1, 1.1, 1.2, 1.3.1, 1.4, and 1.5.
You can select the installation method from two alternatives.
$ git clone https://github.com/kan-bayashi/ParallelWaveGAN.git
$ cd ParallelWaveGAN
$ pip install -e .
# If you want to use distributed training, please install
# apex manually by following https://github.com/NVIDIA/apex
$ ...
Note that your cuda version must be exactly matched with the version used for the pytorch binary to install apex.
To install pytorch compiled with different cuda version, see tools/Makefile
.
$ git clone https://github.com/kan-bayashi/ParallelWaveGAN.git
$ cd ParallelWaveGAN/tools
$ make
# If you want to use distributed training, please run following
# command to install apex.
$ make apex
Note that we specify cuda version used to compile pytorch wheel.
If you want to use different cuda version, please check tools/Makefile
to change the pytorch wheel to be installed.
This repository provides Kaldi-style recipes, as the same as ESPnet.
Currently, the following recipes are supported.
- LJSpeech: English female speaker
- JSUT: Japanese female speaker
- CSMSC: Mandarin female speaker
- CMU Arctic: English speakers
- JNAS: Japanese multi-speaker
- VCTK: English multi-speaker
- LibriTTS: English multi-speaker
- YesNo: English speaker (For debugging)
To run the recipe, please follow the below instruction.
# Let us move on the recipe directory
$ cd egs/ljspeech/voc1
# Run the recipe from scratch
$ ./run.sh
# You can change config via command line
$ ./run.sh --conf <your_customized_yaml_config>
# You can select the stage to start and stop
$ ./run.sh --stage 2 --stop_stage 2
# If you want to specify the gpu
$ CUDA_VISIBLE_DEVICES=1 ./run.sh --stage 2
# If you want to resume training from 10000 steps checkpoint
$ ./run.sh --stage 2 --resume <path>/<to>/checkpoint-10000steps.pkl
See more info about the recipes in this README.
The decoding speed is RTF = 0.016 with TITAN V, much faster than the real-time.
[decode]: 100%|██████████| 250/250 [00:30<00:00, 8.31it/s, RTF=0.0156]
2019-11-03 09:07:40,480 (decode:127) INFO: finished generation of 250 utterances (RTF = 0.016).
Even on the CPU (Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz 16 threads), it can generate less than the real-time.
[decode]: 100%|██████████| 250/250 [22:16<00:00, 5.35s/it, RTF=0.841]
2019-11-06 09:04:56,697 (decode:129) INFO: finished generation of 250 utterances (RTF = 0.734).
If you use MelGAN's generator, the decoding speed will be further faster.
# On CPU (Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz 16 threads)
[decode]: 100%|██████████| 250/250 [04:00<00:00, 1.04it/s, RTF=0.0882]
2020-02-08 10:45:14,111 (decode:142) INFO: Finished generation of 250 utterances (RTF = 0.137).
# On GPU (TITAN V)
[decode]: 100%|██████████| 250/250 [00:06<00:00, 36.38it/s, RTF=0.00189]
2020-02-08 05:44:42,231 (decode:142) INFO: Finished generation of 250 utterances (RTF = 0.002).
If you use Multi-band MelGAN's generator, the decoding speed will be much further faster.
# On CPU (Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz 16 threads)
[decode]: 100%|██████████| 250/250 [01:47<00:00, 2.95it/s, RTF=0.048]
2020-05-22 15:37:19,771 (decode:151) INFO: Finished generation of 250 utterances (RTF = 0.059).
# On GPU (TITAN V)
[decode]: 100%|██████████| 250/250 [00:05<00:00, 43.67it/s, RTF=0.000928]
2020-05-22 15:35:13,302 (decode:151) INFO: Finished generation of 250 utterances (RTF = 0.001).
If you want to accelerate the inference more, it is worthwhile to try the conversion from pytorch to tensorflow.
The example of the conversion is available in the notebook (Provided by @dathudeptrai).
Here the results are summarized in the table.
You can listen to the samples and download pretrained models from the link to our google drive.
Model | Conf | Lang | Fs [Hz] | Mel range [Hz] | FFT / Hop / Win [pt] | # iters |
---|---|---|---|---|---|---|
ljspeech_parallel_wavegan.v1 | link | EN | 22.05k | 80-7600 | 1024 / 256 / None | 400k |
ljspeech_parallel_wavegan.v1.long | link | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1000k |
ljspeech_parallel_wavegan.v1.no_limit | link | EN | 22.05k | None | 1024 / 256 / None | 400k |
ljspeech_parallel_wavegan.v3 | link | EN | 22.05k | 80-7600 | 1024 / 256 / None | 3000k |
ljspeech_melgan.v1 | link | EN | 22.05k | 80-7600 | 1024 / 256 / None | 400k |
ljspeech_melgan.v1.long | link | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1000k |
ljspeech_melgan_large.v1 | link | EN | 22.05k | 80-7600 | 1024 / 256 / None | 400k |
ljspeech_melgan_large.v1.long | link | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1000k |
ljspeech_melgan.v3 | link | EN | 22.05k | 80-7600 | 1024 / 256 / None | 2000k |
ljspeech_melgan.v3.long | link | EN | 22.05k | 80-7600 | 1024 / 256 / None | 4000k |
ljspeech_full_band_melgan.v1 | link | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1000k |
ljspeech_multi_band_melgan.v1 | link | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1000k |
ljspeech_multi_band_melgan.v2 | link | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1000k |
jsut_parallel_wavegan.v1 | link | JP | 24k | 80-7600 | 2048 / 300 / 1200 | 400k |
jsut_multi_band_melgan.v2 (New!) | link | JP | 24k | 80-7600 | 2048 / 300 / 1200 | 1000k |
csmsc_parallel_wavegan.v1 | link | ZH | 24k | 80-7600 | 2048 / 300 / 1200 | 400k |
csmsc_multi_band_melgan.v2 (New!) | link | ZH | 24k | 80-7600 | 2048 / 300 / 1200 | 1000k |
arctic_slt_parallel_wavegan.v1 | link | EN | 16k | 80-7600 | 1024 / 256 / None | 400k |
jnas_parallel_wavegan.v1 | link | JP | 16k | 80-7600 | 1024 / 256 / None | 400k |
vctk_parallel_wavegan.v1 | link | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 400k |
vctk_parallel_wavegan.v1.long | link | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1000k |
vctk_multi_band_melgan.v2 (New!) | link | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1000k |
libritts_parallel_wavegan.v1 | link | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 400k |
libritts_parallel_wavegan.v1.long | link | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1000k |
Please access at our google drive to check more results.
Here the minimal code is shown to perform analysis-synthesis using the pretrained model.
# Please make sure you installed `parallel_wavegan`
# If not, please install via pip
$ pip install parallel_wavegan
# Please download pretrained models and put them in `pretrain_model` directory
$ ls pretrain_model
checkpoint-400000steps.pkl config.yml stats.h5
# Please put an audio file in `sample` directory to perform analysis-synthesis
$ ls sample/
sample.wav
# Then perform feature extraction -> feature normalization -> sysnthesis
$ parallel-wavegan-preprocess \
--config pretrain_model/config.yml \
--rootdir sample \
--dumpdir dump/sample/raw
100%|████████████████████████████████████████| 1/1 [00:00<00:00, 914.19it/s]
[Parallel(n_jobs=16)]: Using backend LokyBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done 1 out of 1 | elapsed: 1.2s finished
$ parallel-wavegan-normalize \
--config pretrain_model/config.yml \
--rootdir dump/sample/raw \
--dumpdir dump/sample/norm \
--stats pretrain_model/stats.h5
2019-11-13 13:44:29,574 (normalize:87) INFO: the number of files = 1.
100%|████████████████████████████████████████| 1/1 [00:00<00:00, 513.13it/s]
[Parallel(n_jobs=16)]: Using backend LokyBackend with 16 concurrent workers.
[Parallel(n_jobs=16)]: Done 1 out of 1 | elapsed: 0.6s finished
$ parallel-wavegan-decode \
--checkpoint pretrain_model/checkpoint-400000steps.pkl \
--dumpdir dump/sample/norm \
--outdir sample
2019-11-13 13:44:31,229 (decode:91) INFO: the number of features to be decoded = 1.
2019-11-13 13:44:37,074 (decode:105) INFO: loaded model parameters from pretrain_model/checkpoint-400000steps.pkl.
[decode]: 100%|███████████████████| 1/1 [00:00<00:00, 18.33it/s, RTF=0.0146]
2019-11-13 13:44:37,132 (decode:129) INFO: finished generation of 1 utterances (RTF = 0.015).
# you can find the generated speech in `sample` directory
$ ls sample
sample.wav sample_gen.wav
Here, I show the procedure to generate waveforms with features generated by ESPnet-TTS models.
# Make sure you already finished running the recipe of ESPnet-TTS.
# You must use the same feature settings for both Text2Mel and Mel2Wav models.
# Let us move on "ESPnet" recipe directory
$ pwd
/path/to/espnet/egs/<recipe_name>/tts1
# Please install this repository in ESPnet conda (or virtualenv) environment
$ . ./path.sh && pip install -U parallel_wavegan
# Please download pretrained models and put them in `pretrain_model` directory
$ ls pretrain_model
checkpoint-400000steps.pkl config.yml stats.h5
Case 1: If you use the same dataset for both Text2Mel and Mel2Wav
# In this case, you can directly use generated features for decoding.
# Please specify `feats.scp` path for `--feats-scp`, which is located in
# exp/<your_model_name>/outputs_*_decode/<set_name>/feats.scp.
# Note that do not use outputs_*decode_denorm/<set_name>/feats.scp since
# it is de-normalized features (the input for PWG is normalized features).
$ parallel-wavegan-decode \
--checkpoint pretrain_model/checkpoint-400000steps.pkl \
--feats-scp exp/<your_model_name>/outputs_*_decode/<name>/feats.scp \
--outdir <path_to_outdir>
# You can find the generated waveforms in <path_to_outdir>/.
$ ls <path_to_outdir>
utt_id_1_gen.wav utt_id_2_gen.wav ... utt_id_N_gen.wav
Case 2: If you use different datasets for Text2Mel and Mel2Wav models
# In this case, you must perform normlization at first.
# Please specify `feats.scp` path for `--feats-scp`, which is located in
# exp/<your_model_name>/outputs_*_decode_denorm/<set_name>/feats.scp.
$ parallel-wavegan-normalize \
--skip-wav-copy \
--config pretrain_model/config.yml \
--stats pretrain_model/stats.h5 \
--feats-scp exp/<your_model_name>/outputs_*_decode_denorm/<set_name>/feats.scp \
--dumpdir <path_to_dumpdir>
# Normalized features dumped in <path_to_dumpdir>/.
$ ls <path_to_dumpdir>
utt_id_1.h5 utt_id_2.h5 ... utt_id_N.h5
# Then, decode normalzied features with the pretrained model.
$ parallel-wavegan-decode \
--checkpoint pretrain_model/checkpoint-400000steps.pkl \
--dumpdir <path_to_dumpdir> \
--outdir <path_to_outdir>
# You can find the generated waveforms in <path_to_outdir>/.
$ ls <path_to_outdir>
utt_id_1_gen.wav utt_id_2_gen.wav ... utt_id_N_gen.wav
If you want to combine these models in python, you can try the real-time demonstration in Google Colab!
- Parallel WaveGAN
- r9y9/wavenet_vocoder
- LiyuanLucasLiu/RAdam
- MelGAN
- descriptinc/melgan-neurips
- Multi-band MelGAN
The author would like to thank Ryuichi Yamamoto (@r9y9) for his great repository, paper, and valuable discussions.
Tomoki Hayashi (@kan-bayashi)
E-mail: hayashi.tomoki<at>g.sp.m.is.nagoya-u.ac.jp