niceynine's Stars
binary-husky/gpt_academic
为GPT/GLM等LLM大语言模型提供实用化交互接口,特别优化论文阅读/润色/写作体验,模块化设计,支持自定义快捷按钮&函数插件,支持Python和C++等项目剖析&自译解功能,PDF/LaTex论文翻译&总结功能,支持并行问询多种LLM模型,支持chatglm3等本地模型。接入通义千问, deepseekcoder, 讯飞星火, 文心一言, llama2, rwkv, claude2, moss等。
floodsung/Deep-Learning-Papers-Reading-Roadmap
Deep Learning papers reading roadmap for anyone who are eager to learn this amazing tech!
kaixindelele/ChatPaper
Use ChatGPT to summarize the arXiv papers. 全流程加速科研,利用chatgpt进行论文全文总结+专业翻译+润色+审稿+审稿回复
microsoft/torchgeo
TorchGeo: datasets, samplers, transforms, and pre-trained models for geospatial data
ZhugeKongan/torch-template-for-deep-learning
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.
duma-repo/ai_code_reader
AI项目阅读器 by渡码
kemomi/daimai
大麦网演唱会抢票脚本
1044197988/Python-Image-feature-extraction
Python实现提取图像的纹理、颜色特征,包含快速灰度共现矩阵(GLCM)、LBP特征、颜色矩、颜色直方图。
orfeotoolbox/OTB
Github mirror of https://gitlab.orfeo-toolbox.org/orfeotoolbox/otb
LuckyZXL2016/Deep-Learning-Papers-Reading-Roadmap
深度学习论文阅读路线图
jgomezdans/prosail
Python bindings for the PROSAIL canopy reflectance model
EduinHSERNA/pyGEDI
pyGEDI is a Python Package for NASA's Global Ecosystem Dynamics Investigation (GEDI) mission, data extraction, analysis, processing and visualization.
leftfield-geospatial/geedim
Search, composite, and download Google Earth Engine imagery.
ExpressGit/Pytorch_Study_Demo
Pytorch_Study_Demo
royalosyin/Work-with-DEM-data-using-Python-from-Simple-to-Complicated
Work with DEM data using Python from Simple to Complicated. Many python packages will be touched such as GDAL, numpy, xarray, rasterio, folium, cartopy, geopandas etc.
maziarraissi/ParametricGP
Parametric Gaussian Process Regression for Big Data
remotesensinginfo/rsgislib-tutorials
A set of notebook tutorials for RSGISLib.
akamoske/canopyLazR
R package to estimate leaf area density (LAD) and leaf area index (LAI) from airborne LiDAR point clouds
quqixun/BioMassters
An algorithm that predicts yearly Aboveground Biomass for Finnish forests using satellite imagery. [NeurIPS 2023 Datasets & Benchmarks Track]
linesd/SSGPR
Sparse Spectrum Gaussian Process Regression
jbferet/prosail
R package dedicated to the PROSAIL canopy reflectance model. The package allows running PROSAIL in direct and inverse modes, with various inversion strategies. A tutorial can be found on the gitlab website
msalinero/GEEGPRPhenoDemos
Google Earth Engine demo codes from the article "Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression"
fabianfassnacht/biomass
R-Codes for RSE manuscript "Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass"
Mahyarona/VSSIXA
Vegetation Spectral-Structural Information eXtraction Algorithm (VSSIXA): Working with Point cloud and LiDAR
jianboqi/LAI3D
Inversion of 3D LAI from airborne or UAV LiDAR point cloud and reconstruct 3D scenes for radiative transfer simulations.
ADA-research/AutoML4HybridEarthScienceModels
earth-chris/xleaf
Leaf and canopy radiative transfer modeling tools built on PROSPECT-D and SAIL
Hauzero/SensitivityAnalysisPROSAIL
Sensitivity Analysis PROSAIL
shielamms/remote-sensing-book
A Jupyter Book about basic techniques in remote sensing using Google Earth Engine and Python
euanmitchell/dissertation
MSc dissertation code repository for working with GEDI and ALS lidar data.