deployment Documentation Status MIT License Python version Huawei Cloud TensorFlow

Cigarette smoking has had a devastating effect on public health world-wide over the past 100 years and will continue to do so throughout the current century unless there is a substantial reduction in the prevalence of smoking. Compulsive smoking is driven by addiction to nicotine, but most of the harm from smoking is caused by exposure to tobacco combustion products. For many years, tobacco researchers and policy experts have entertained the idea that a clean source of nicotine that could be inhaled and provide similar rewarding effects as a cigarette might entice smokers away from cigarette smoking and lead either to quitting smoking or to long-term nicotine use without incurring the harm from tobacco combustion toxicants.

e-Cigarettes are nicotine delivery devices that deliver nicotine with- out combusting tobacco. These are battery-powered devices that heat a liquid composed of propylene glycol and/or vegetable glycerin, nicotine, and flavoring to form a vapor which rapidly aerosolizes and is inhaled like cigarette smoke. e-Cigarettes could be beneficial to public health if they help smokers quit smoking and possibly (at least for some health effects) reduce harm for those who smoke fewer cigarettes while using e-Cigarettes. On the other hand, there are several concerns about adverse effects of e-Cigarette use on a population level, including attracting youth and serving as a gateway to nicotine addiction and cigarette smoking, dual use with cigarettes resulting in lower rates of quitting smoking, renormalizing nicotine use and undermining smoke-free air legislation, and/or diverting smokers from proven smoking cessation treatment sessions.

One of the determinants of the net effect of e-Cigarettes on public health is the benefit versus harms, including the direct toxicity of e-Cigarette use. Assessing the toxicity of e-Cigarettes requires an understanding of the design and variability in device components and constituents of e-liquids and aerosols, both chemicals and particulates. Biomarkers of exposure to e-Cigarette toxicants in people are critical for extrapolating machine-tested e-Cigarette emission findings to actual human exposures.

Contents