mardyr2 enables the user to select, visualize and download data from the
MARDY-research project. Additional functionalities include access to
training models via an API, the DEbateNet-mig15
-data set, and utility
functions.
This software is part of the following publications:
Lapesa, G., Blessing, A., Blokker, N., Dayanik, E., Haunss, S., Kuhn, J., & Padó, S. (2020). DEbateNet-mig15: Tracing the 2015 immigration debate in Germany over time. Proceedings of LREC, 919–927. https://www.aclweb.org/anthology/2020.lrec-1.115
Blokker, N., Blessing, A., Dayanik, E., Kuhn, J., Padó, S., & Lapesa, G. (2023). Between welcome culture and border fence. A dataset on the European refugee crisis in German newspaper reports. Language Resources and Evaluation, 121 - 153. https://link.springer.com/article/10.1007/s10579-023-09641-8
See here for further information regarding the licensing.
You can find the LREC release version of mardyr2 here. To install the development version please run:
devtools::install_github("nicoblokker/mardyr2")
Load and access the DEbateNet-15mig data set:
library(mardyr2)
data("DEbateNet_mig15")
dim(DEbateNet_mig15)
#> [1] 1815 5
Start shinydashboard
to visualize the DEbateNet-mig15
data set
library(mardyr2)
get_data(source = "LRE")
Or send a test sentence to the API [deprecated]:
library(mardyr2)
get_predictions("Angela Merkel lehnt eine Obergrenze ab.", output = "word")
#> # A tibble: 7 x 4
#> sentence id prediction word
#> <int> <int> <chr> <chr>
#> 1 1 1 B-Claim Angela
#> 2 1 2 I-Claim Merkel
#> 3 1 3 I-Claim lehnt
#> 4 1 4 I-Claim eine
#> 5 1 5 I-Claim Obergrenze
#> 6 1 6 I-Claim ab
#> 7 1 7 I-Claim .
Access the documentation for further examples (help(package = "mardyr2")
).