/gen-efficientnet-pytorch

Pretrained EfficientNet, MixNet, MobileNetV3, MNASNet A1 and B1, FBNet, Single-Path NAS

Primary LanguagePythonApache License 2.0Apache-2.0

(Generic) EfficientNets for PyTorch

A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter efficient architectures derived from the MobileNet V1/V2 block sequence, including those found via automated neural architecture search.

All models are implemented by GenEfficientNet or MobileNetV3 classes, with string based architecture definitions to configure the block layouts (idea from here)

What's New

Nov 22, 2019

  • New top-1 high! Ported official TF EfficientNet AdvProp (https://arxiv.org/abs/1911.09665) weights and B8 model spec. Created a new set of ap models since they use a different preprocessing (Inception mean/std) from the original EfficientNet base/AA/RA weights.

Nov 15, 2019

  • Ported official TF MobileNet-V3 float32 large/small/minimalistic weights
  • Modifications to MobileNet-V3 model and components to support some additional config needed for differences between TF MobileNet-V3 and mine

Oct 30, 2019

  • Many of the models will now work with torch.jit.script, MixNet being the biggest exception
  • Improved interface for enabling torchscript or ONNX export compatible modes (via config)
  • Add JIT optimized mem-efficient Swish/Mish autograd.fn in addition to memory-efficient autgrad.fn
  • Activation factory to select best version of activation by name or override one globally
  • Add pretrained checkpoint load helper that handles input conv and classifier changes

Oct 27, 2019

Models

Implemented models include:

I originally implemented and trained some these models with code here, this repository contains just the GenEfficientNet models, validation, and associated ONNX/Caffe2 export code.

Pretrained

I've managed to train several of the models to accuracies close to or above the originating papers and official impl. My training code is here: https://github.com/rwightman/pytorch-image-models

Model Prec@1 (Err) Prec@5 (Err) Param#(M) MAdds(M) Image Scaling Resolution Crop
mixnet_xl 80.120 (19.880) 95.022 (4.978) 11.90 TBD bicubic 224 0.875
mixnet_l 78.976 (21.024 94.184 (5.816) 7.33 TBD bicubic 224 0.875
efficientnet_b2 79.668 (20.332) 94.634 (5.366) 9.1 1003 bicubic 260 0.890
efficientnet_b1 78.692 (21.308) 94.086 (5.914) 7.8 694 bicubic 240 0.882
mixnet_m 77.256 (22.744) 93.418 (6.582) 5.01 353 bicubic 224 0.875
efficientnet_b0 76.912 (23.088) 93.210 (6.790) 5.3 390 bicubic 224 0.875
mixnet_s 75.988 (24.012) 92.794 (7.206) 4.13 TBD bicubic 224 0.875
mobilenetv3_rw 75.634 (24.366) 92.708 (7.292) 5.5 219 bicubic 224 0.875
mnasnet_a1 75.448 (24.552) 92.604 (7.396) 3.9 312 bicubic 224 0.875
fbnetc_100 75.124 (24.876) 92.386 (7.614) 5.6 385 bilinear 224 0.875
mnasnet_b1 74.658 (25.342) 92.114 (7.886) 4.4 315 bicubic 224 0.875
spnasnet_100 74.084 (25.916) 91.818 (8.182) 4.4 TBV bilinear 224 0.875

More pretrained models to come...

Ported Weights

The weights ported from Tensorflow checkpoints for the EfficientNet models do pretty much match accuracy in Tensorflow once a SAME convolution padding equivalent is added, and the same crop factors, image scaling, etc (see table) are used via cmd line args.

IMPORTANT:

  • Tensorflow ported weights for EfficientNet AdvProp (AP), EfficientNet EdgeTPU, EfficientNet-CondConv, and MobileNet-V3 models use Inception style (0.5, 0.5, 0.5) for mean and std.
  • Enabling the Tensorflow preprocessing pipeline with --tf-preprocessing at validation time will improve scores by 0.1-0.5%, very close to original TF impl.

To run validation for tf_efficientnet_b5: python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b5 -b 64 --img-size 456 --crop-pct 0.934 --interpolation bicubic

To run validation w/ TF preprocessing for tf_efficientnet_b5: python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b5 -b 64 --img-size 456 --tf-preprocessing

To run validation for a model with Inception preprocessing, ie EfficientNet-B8 AdvProp: python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b8_ap -b 48 --num-gpu 2 --img-size 672 --crop-pct 0.954 --mean 0.5 --std 0.5

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling Image Size Crop
tf_efficientnet_b8_ap *tfp 85.436 (14.564) 97.272 (2.728) 87.4 bicubic 672 N/A
tf_efficientnet_b8_ap 85.368 (14.632) 97.294 (2.706) 87.4 bicubic 672 0.954
tf_efficientnet_b7_ap *tfp 85.154 (14.846) 97.244 (2.756) 66.35 bicubic 600 N/A
tf_efficientnet_b7_ap 85.118 (14.882) 97.252 (2.748) 66.35 bicubic 600 0.949
tf_efficientnet_b7 *tfp 84.940 (15.060) 97.214 (2.786) 66.35 bicubic 600 N/A
tf_efficientnet_b7 84.932 (15.068) 97.208 (2.792) 66.35 bicubic 600 0.949
tf_efficientnet_b6_ap 84.786 (15.214) 97.138 (2.862) 43.04 bicubic 528 0.942
tf_efficientnet_b6_ap *tfp 84.760 (15.240) 97.124 (2.876) 43.04 bicubic 528 N/A
tf_efficientnet_b5_ap *tfp 84.276 (15.724) 96.932 (3.068) 30.39 bicubic 456 N/A
tf_efficientnet_b5_ap 84.254 (15.746) 96.976 (3.024) 30.39 bicubic 456 0.934
tf_efficientnet_b6 *tfp 84.140 (15.860) 96.852 (3.148) 43.04 bicubic 528 N/A
tf_efficientnet_b6 84.110 (15.890) 96.886 (3.114) 43.04 bicubic 528 0.942
tf_efficientnet_b5 *tfp 83.822 (16.178) 96.756 (3.244) 30.39 bicubic 456 N/A
tf_efficientnet_b5 83.812 (16.188) 96.748 (3.252) 30.39 bicubic 456 0.934
tf_efficientnet_b4_ap *tfp 83.278 (16.722) 96.376 (3.624) 19.34 bicubic 380 N/A
tf_efficientnet_b4_ap 83.248 (16.752) 96.388 (3.612) 19.34 bicubic 380 0.922
tf_efficientnet_b4 83.022 (16.978) 96.300 (3.700) 19.34 bicubic 380 0.922
tf_efficientnet_b4 *tfp 82.948 (17.052) 96.308 (3.692) 19.34 bicubic 380 N/A
tf_efficientnet_b3_ap *tfp 81.882 (18.118) 95.662 (4.338) 12.23 bicubic 300 N/A
tf_efficientnet_b3_ap 81.828 (18.172) 95.624 (4.376) 12.23 bicubic 300 0.903
tf_efficientnet_b3 81.636 (18.364) 95.718 (4.282) 12.23 bicubic 300 0.903
tf_efficientnet_b3 *tfp 81.576 (18.424) 95.662 (4.338) 12.23 bicubic 300 N/A
tf_efficientnet_el 80.534 (19.466) 95.190 (4.810) 10.59 bicubic 300 0.903
tf_efficientnet_el *tfp 80.476 (19.524) 95.200 (4.800) 10.59 bicubic 300 N/A
tf_efficientnet_b2_ap *tfp 80.420 (19.580) 95.040 (4.960) 9.11 bicubic 260 N/A
tf_efficientnet_b2_ap 80.306 (19.694) 95.028 (4.972) 9.11 bicubic 260 0.890
tf_efficientnet_b2 *tfp 80.188 (19.812) 94.974 (5.026) 9.11 bicubic 260 N/A
tf_efficientnet_b2 80.086 (19.914) 94.908 (5.092) 9.11 bicubic 260 0.890
tf_efficientnet_b1_ap *tfp 79.532 (20.468) 94.378 (5.622) 7.79 bicubic 240 N/A
tf_efficientnet_cc_b1_8e *tfp 79.464 (20.536) 94.492 (5.508) 39.7 bicubic 240 0.88
tf_efficientnet_cc_b1_8e 79.298 (20.702) 94.364 (5.636) 39.7 bicubic 240 0.88
tf_efficientnet_b1_ap 79.278 (20.722) 94.308 (5.692) 7.79 bicubic 240 0.88
tf_efficientnet_b1 *tfp 79.172 (20.828) 94.450 (5.550) 7.79 bicubic 240 N/A
tf_efficientnet_em *tfp 78.958 (21.042) 94.458 (5.542) 6.90 bicubic 240 N/A
tf_mixnet_l *tfp 78.846 (21.154) 94.212 (5.788) 7.33 bilinear 224 N/A
tf_efficientnet_b1 78.826 (21.174) 94.198 (5.802) 7.79 bicubic 240 0.88
tf_mixnet_l 78.770 (21.230) 94.004 (5.996) 7.33 bicubic 224 0.875
tf_efficientnet_em 78.742 (21.258) 94.332 (5.668) 6.90 bicubic 240 0.875
tf_efficientnet_cc_b0_8e *tfp 78.314 (21.686) 93.790 (6.210) 24.0 bicubic 224 0.875
tf_efficientnet_cc_b0_8e 77.908 (22.092) 93.656 (6.344) 24.0 bicubic 224 0.875
tf_efficientnet_cc_b0_4e *tfp 77.746 (22.254) 93.552 (6.448) 13.3 bicubic 224 0.875
tf_efficientnet_cc_b0_4e 77.304 (22.696) 93.332 (6.668) 13.3 bicubic 224 0.875
tf_efficientnet_es *tfp 77.616 (22.384) 93.750 (6.250) 5.44 bicubic 224 N/A
tf_efficientnet_b0_ap *tfp 77.514 (22.486) 93.576 (6.424) 5.29 bicubic 224 N/A
tf_efficientnet_es 77.264 (22.736) 93.600 (6.400) 5.44 bicubic 224 N/A
tf_efficientnet_b0 *tfp 77.258 (22.742) 93.478 (6.522) 5.29 bicubic 224 N/A
tf_efficientnet_b0_ap 77.084 (22.916) 93.254 (6.746) 5.29 bicubic 224 0.875
tf_mixnet_m *tfp 77.072 (22.928) 93.368 (6.632) 5.01 bilinear 224 N/A
tf_mixnet_m 76.950 (23.050) 93.156 (6.844) 5.01 bicubic 224 0.875
tf_efficientnet_b0 76.848 (23.152) 93.228 (6.772) 5.29 bicubic 224 0.875
tf_mixnet_s *tfp 75.800 (24.200) 92.788 (7.212) 4.13 bilinear 224 N/A
tf_mobilenetv3_large_100 *tfp 75.768 (24.232) 92.710 (7.290) 5.48 bilinear 224 N/A
tf_mixnet_s 75.648 (24.352) 92.636 (7.364) 4.13 bicubic 224 0.875
tf_mobilenetv3_large_100 75.516 (24.484) 92.600 (7.400) 5.48 bilinear 224 0.875
tf_mobilenetv3_large_075 *tfp 73.730 (26.270) 91.616 (8.384) 3.99 bilinear 224 N/A
tf_mobilenetv3_large_075 73.442 (26.558) 91.352 (8.648) 3.99 bilinear 224 0.875
tf_mobilenetv3_large_minimal_100 *tfp 72.678 (27.322) 90.860 (9.140) 3.92 bilinear 224 N/A
tf_mobilenetv3_large_minimal_100 72.244 (27.756) 90.636 (9.364) 3.92 bilinear 224 0.875
tf_mobilenetv3_small_100 *tfp 67.918 (32.082) 87.958 (12.042 2.54 bilinear 224 N/A
tf_mobilenetv3_small_100 67.918 (32.082) 87.662 (12.338) 2.54 bilinear 224 0.875
tf_mobilenetv3_small_075 *tfp 66.142 (33.858) 86.498 (13.502) 2.04 bilinear 224 N/A
tf_mobilenetv3_small_075 65.718 (34.282) 86.136 (13.864) 2.04 bilinear 224 0.875
tf_mobilenetv3_small_minimal_100 *tfp 63.378 (36.622) 84.802 (15.198) 2.04 bilinear 224 N/A
tf_mobilenetv3_small_minimal_100 62.898 (37.102) 84.230 (15.770) 2.04 bilinear 224 0.875

*tfp models validated with tf-preprocessing pipeline

Google tf and tflite weights ported from official Tensorflow repositories

PyTorch Hub

Models can be accessed via the PyTorch Hub API

>>> torch.hub.list('rwightman/gen-efficientnet-pytorch')
['efficientnet_b0', ...]
>>> model = torch.hub.load('rwightman/gen-efficientnet-pytorch', 'efficientnet_b0', pretrained=True)
>>> model.eval()
>>> output = model(torch.randn(1,3,224,224))

Pip

This package can be installed via pip.

Install (after conda env/install):

pip install geffnet

Eval use:

>>> import geffnet
>>> m = geffnet.create_model('mobilenetv3_rw', pretrained=True)
>>> m.eval()

Train use:

>>> import geffnet
>>> # models can also be created by using the entrypoint directly
>>> m = geffnet.efficientnet_b2(pretrained=True, drop_rate=0.25, drop_connect_rate=0.2)
>>> m.train()

Create in a nn.Sequential container, for fast.ai, etc:

>>> import geffnet
>>> m = geffnet.mixnet_l(pretrained=True, drop_rate=0.25, drop_connect_rate=0.2, as_sequential=True)

Exporting

Scripts to export models to ONNX and then to Caffe2 are included, along with a Caffe2 script to verify.

As an example, to export the MobileNet-V3 pretrained model and then run an Imagenet validation:

python onnx_export.py --model tf_mobilenetv3_large_100 ./mobilenetv3_100.onnx
python onnx_optimize.py ./mobilenetv3_100.onnx --output ./mobilenetv3_100-opt.onnx
python onnx_to_caffe.py ./mobilenetv3_100-opt.onnx --c2-prefix mobilenetv3
python caffe2_validate.py /imagenet/validation/ --c2-init ./mobilenetv3.init.pb --c2-predict ./mobilenetv3.predict.pb --interpolation bicubic

NOTE the TF ported weights with the 'SAME' conv padding activated cannot be exported to ONNX unless _EXPORTABLE flag in config.py is set to True. Use config.set_exportable(True) as in the updated onnx_export.py example script.