EN|简中
Generated from Tensorflow v2.3.1
A complete overview of Tensorflow Lite Micro.
Searching through the web, I found there are not that much information about it. So I create this project as a definitive place to go to research Tensorflow Lite Micro. This project is under active development. If you want to contribute please submit pull request or contact me directly at wniu(at)connect(dot)ust(dot)hk.
OS/Platform | Makefile | Cmake | Qt | Visual Studio | Visual Studio code | Waf |
---|---|---|---|---|---|---|
Windows 10 | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ❌ |
Linux(Ubuntu 18.04) | ✔️ | ✔️ | ✔️ | ❌ | ✔️ | ✔️ |
Linux(Centos 7) | ✔️ | ✔️ | ✔️ | ❌ | ✔️ | ✔️ |
Build instruction for supported system can be found HERE.
- .vscode: Visual studio code project files
- doc: Documents
- LICENSE: license agreement
- Makefile: Make project file
- Makefile.plank: yet another Make project file
- Readme.md: Main document in English
- Readme_zh.md: Main document in Mandarin
- tensorflow: Tensorflow lite Micro source code
- core
- lite
- TFLM.pro: QT project file
- third_party:
- flatbuffer: flatbuffer header
- gemmlowp: gemmlowp header
- ruy
- VS2019:
- TFLM: Visual Studio Project files
- CMakeLists.txt: Cmake project file
- wscript: Waf project file
- Isolating TFLM source from Tensorflow v2.3.1
- Makefile
- Cmake
- QT
- Visual Studio
- Visual Studio Code
- WAF
- Documentation
- General Documentation on Tensorflow Lite Micro (WIP)
- UML Class diagram for Tensorflow Lite Flatbuffer model
- UML Class diagram for Tensorflow Lite Micro
- UML Sequence diagram for Tensorflow Lite Micro
- Provide helper script for file operation only depend on python
- Provide pre-trained models and trainning code
- MNIST Classification
- Visual Wake Word
- Cifar-10 Classification with resnet-10
- Anomaly detection with auto-encoder
- Keyword spotting with
-
TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems Arxiv
-
TensorFlow Lite for Microcontrollers official documents
-
Tensorflow Github
-
Tensorflow Lite Micro Github
Im ninn55. A grads student from HKUST you can find me here.