Correlation plots on the terminal, for quick and simple insights. Powered by pandas
.
Dataset source: FIFA World Cup 2018 Match Stats
Requires Python3. Currently, only CSV files are supported.
The dataset parsing and correlation calculation is all done via pandas
.
pip install corella
corella
accepts CSV data either through STDIN or as an input file.
cat file.csv | corella
or corella --input file.csv
Set the color to use for positive correlation. Defaults to light_red
Supported colors include black, red, green, yellow, blue, magenta, cyan, white
and light_gray, dark_gray, light_red, light_green, light_yellow, light_blue, light_magenta, light_cyan
.
Full list of all 256 supported colors can be found at the colored project page.
Set the color to use for negative correlation. Defaults to light_blue
Optional input CSV file. If specified, STDIN is ignored.
The delimiter for the CSV file. Defaults to ,
.
The method to use for calculating the correlation coefficient. Defaults to pearson
.
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html
The character padding to use on the left of the plot. Defaults to 20
. If the length of a column name exceeds the specified padding, it is ignored.
A flag to specify if the provided input does not have a header. Defaults to False
. If specified, column numbers are used as names instead.
from corella import Corella
C = Corella()
C.draw(pandas_df)
Two datasets are provided within ./datasets/
- The Iris dataset
- FIFA World Cup 2018 Match Stats from Kaggle.
Try corella --input datasets/iris.csv --pos-color light_magenta --neg-color blue --padding 30
MIT