A PyTorch implementation of Deep Fusion GAN by Ming Tao, Hao Tang, Songsong Wu, Nicu Sebe, Xiaoyuan Jing, Fei Wu, Bingkun Bao.
Dependencies:
python~=3.7.9
torch~=1.8.0
numpy~=1.21.4
pandas~=1.2.2
torchvision~=0.9.0
Pillow~=7.2.0
matplotlib~=3.3.4
tqdm~=4.62.3
To install required packages use:
pip install -r requirements.txt
Use train_example.ipynb
, metrics_evaluation.ipynb
and eval_example.ipynb
to train, eval and generation.
The architecture of the proposed DF-GAN for text-to-image synthesis. DF-GAN generates high-resolution images directly by one pair of generator and discriminator and fuses the text information and visual feature maps through multiple Deep text-image Fusion Blocks (DFBlock) in UPBlocks.
Ours | Paper | |
---|---|---|
IS | 4.43 | 5.10 |
FID | 18.10 | 21.42 |
Example of sixteen generated birds.