The code of MFNet: A Novel GNN-Based Multi-Level Feature Network With Superpixel Priors
Directory structure reference
SODData.py
torch==1.4.0+cu100
pip install torch-scatter==latest+cu100 -f https://pytorch-geometric.com/whl/torch-1.4.0.html
pip install torch-sparse==latest+cu100 -f https://pytorch-geometric.com/whl/torch-1.4.0.html
pip install torch-cluster==latest+cu100 -f https://pytorch-geometric.com/whl/torch-1.4.0.html
pip install torch-spline-conv==latest+cu100 -f https://pytorch-geometric.com/whl/torch-1.4.0.html
pip install torch-geometric=1.4.3
-
Set dataset path:
_data_root_path = "/your/data/path/SOD/DUTS"
-
Just Run.
- Set Param
model_name = "MFNet_SOD"
from MFNet_SOD import MyGCNNet, MyDataset
model_file = "./ckpt/MFNet_SOD/0/epoch_xx.pkl"
_data_root_path = "/your/data/path/SOD" # Change to Your Data Path
result_path = "./result/MFNet_SOD/0/epoch_xx"
-
Just Run.
-
For Final Eval Result, Please Use: https://github.com/ArcherFMY/sal_eval_toolbox
@ARTICLE{9953965,
author={Li, Shuo and Liu, Fang and Jiao, Licheng and Chen, Puhua and Liu, Xu and Li, Lingling},
journal={IEEE Transactions on Image Processing},
title={MFNet: A Novel GNN-Based Multi-Level Feature Network With Superpixel Priors},
year={2022},
volume={31},
number={},
pages={7306-7321},
doi={10.1109/TIP.2022.3220057}
}