root
├── images
│ ├── train
│ └── test
├── annotations
│ ├── train
│ │ └── grounded_diseases_train.json
│ └── test
│ └── grounded_diseases_test.json
└── pretrained_checkpoint
└── checkpoint_stage3.pth
You may load from the pretrained model checkpoints:
For checkpoint_stage3.pth
, you can load from the pretrained model below:
MiniGPT-v2 (after stage-3) |
---|
Download |
- Python == 3.10.13
conda create -n litegpt python=3.10.13
git clone https://github.com/nngocson2002/LVLM-Med.git
cd LVLM-Med
pip install -r requirements.txt
We provide different visual encoders with the following keywords:
eva_clip_g
pubmed_clip_vit
biomed_clip
biomed_pubmed_clip
After selecting the visual encoder you want, set it here at Line 7, and here at Line 8.
- Set the training image path to
root/images/train
here at Line 5. - Set the training annotations path to
root/annotations/test/grounded_diseases_train.json
here at Line 6. - Set the pretrained checkpoint path to
root/pretrained_checkpoint/checkpoint_stage3.pth
here at Line 9. - Set the checkpoint save path here at Line 44.
- Set the evaluation annotations path to
root/annotations/test/grounded_diseases_test.json
here at Line 27. - Set the evaluation image path to
root/images/test
here at Line 28. - Set the evaluation result output path here at Line 38.
- Set the prompt you want to evaluate the model with here at Line 29.
torchrun --nproc-per-node NUM_GPU train.py\
--cfg-path train_configs/train_vindrcxr.yaml\
--cfg-eval-path eval_configs/eval_vindrcxr.yaml\
--eval-dataset vindrcxr_val
If you want to evaluate the model independently instead of during training, follow the step 2 in the Training section, and then run:
torchrun --nproc-per-node NUM_GPU evaluate.py\
--cfg-path eval_configs/eval_vindrcxr.yaml\
--eval-dataset vindrcxr_val