/SMAC

ReDWeb-S: a large-scale challenging dataset for RGB-D Salient Object Detection.

Primary LanguagePython

SMAC: Learning Selective Mutual Attention and Contrast for RGB-D Saliency Detection

arXiv version: https://arxiv.org/abs/2010.05537

Citing our work

If you think our work is helpful, please cite

@article{liu2021learning,
  title={Learning Selective Mutual Attention and Contrast for RGB-D Saliency Detection},
  author={Liu, Nian and Zhang, Ni and Shao, Ling and Han, Junwei},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021}
}

The Proposed RGB-D Salient Object Detection Dataset

ReDWeb-S

We construct a new large-scale challenging dataset ReDWeb-S and it has totally 3179 images with various real-world scenes and high-quality depth maps. We split the dataset into a training set with 2179 RGB-D image pairs and a testing set with the remaining 1000 image pairs.

avatar

The proposed dataset link can be found here. [baidu pan fetch code: rp8b | Google drive]

Dataset Statistics and Comparisons

We analyze the proposed ReDWeb-S datset from several statistical aspects and also conduct a comparison between ReDWeb-S and other existing RGB-D SOD datasets.

avatar

avatar Fig.1. Top 60% scene and object category distributions of our proposed ReDWeb-S dataset.

avatar Fig.2. Comparison of nine RGB-D SOD dataset in terms of the distributions of global contrast and interior contrast.

avatar Fig.3. Comparsion of the average annotation maps for nine RGB-D SOD benchmark datasets.

avatar

Fig.4. Comparsion of the distribution of object size for nine RGB-D SOD benchmark datasets.

SOTA Results on Our Proposed Dataset

We provide other SOTA RGB-D methods' results and scores on our proposed dataset. You can directly download all results [here ov08].

No. Pub. Name Title Download
00 TIP2023 Caver Caver: Cross-modal view-mixed transformer for bi-modal salient object detection results, 2kfm
01 TCSVT2022 HRTransNet HRTransNet: HRFormer-Driven Two-Modality Salient Object Detection results, azjb
02 TCSVT2021 SwinNet SwinNet: Swin Transformer Drives Edge-Aware RGB-D and RGB-T Salient Object Detection results, zf9s
03 ICCV2021 CMINet RGB-D Saliency Detection via Cascaded Mutual Information Minimization results, maav
04 ICCV2021 VST Visual Saliency Transformer results, rkq9
05 ICCV2021 SPNet Specificity-preserving RGB-D Saliency Detection results, wwup
06 CVPR2021 DCF Calibrated RGB-D Salient Object Detection results, 3kn9
07 ECCV2020 PGAR Progressively Guided Alternate Refinement Network for RGB-D Salient Object Detection results, mwtr
08 ECCV2020 HDFNet Hierarchical Dynamic Filtering Network for RGB-D Salient Object Detection results, b98z
09 ECCV2020 DANet A Single Stream Network for Robust and Real-time RGB-D Salient Object Detection results, 1luj
10 ECCV2020 CoNet Accurate RGB-D Salient Object Detection via Collaborative Learning results, bqq6
11 ECCV2020 CMWNet Cross-Modal Weighting Network for RGB-D Salient Object Detection results, ztv9
12 ECCV2020 cmMS RGB-D Salient Object Detection with Cross-Modality Modulation and Selection results, kwe5
13 ECCV2020 BBS-Net BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network results, ya5v
14 ECCV2020 ATSA Asymmetric Two-Stream Architecture for Accurate RGB-D Saliency Detection results, k750
15 CVPR2020 S2MA Learning Selective Self-Mutual Attention for RGB-D Saliency Detection results, g0pgx
16 CVPR2020 JL-DCF JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection results, xh9p
17 CVPR2020 UCNet UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders results, 6o93
18 CVPR2020 A2dele A2dele: Adaptive and Attentive Depth Distiller for Efficient RGB-D Salient Object Detection results, swv5
19 CVPR2020 SSF-RGBD Select, Supplement and Focus for RGB-D Saliency Detection results, oshl
20 TIP2020 DisenFusion RGBD Salient Object Detection via Disentangled Cross-Modal Fusion results, h3hc
21 TNNLS2020 D3Net D3Net:Rethinking RGB-D Salient Object Detection: Models, Datasets, and Large-Scale Benchmarks results, tetn
22 ICCV2019 DMRA Depth-induced multi-scale recurrent attention network for saliency detection results, kqq4
23 CVPR2019 CPFP Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection results, 0v2c
24 TIP2019 TANet Three-stream attention-aware network for RGB-D salient object detection results, hsy9
25 CVPR2018 PCF Progressively Complementarity-Aware Fusion Network for RGB-D Salient Object Detection results, qzhm
26 PR2019 MMCI Multi-modal fusion network with multiscale multi-path and cross-modal interactions for RGB-D salient object detection results, c90m
27 TCyb2017 CTMF CNNs-based RGB-D saliency detection via cross-view transfer and multiview fusion results, i0zb
28 Access2019 AFNet Adaptive fusion for rgb-d salient object detection results, 54zc
29 TIP2017 DF Rgbd salient object detection via deep fusion results, d7sc
30 ICME2016 SE Salient object detection for rgb-d image via saliency evolution results, h10s
31 SPL2016 DCMC Saliency detection for stereoscopic images based on depth confidence analysis and multiple cues fusion results, 18po
32 CVPR2016 LBE Local background enclosure for rgb-d salient object detection results, iiz5
Methods S-measure maxF E-measure MAE
S2MA 0.711 0.696 0.781 0.139
JL-DCF 0.734 0.727 0.805 0.128
UCNet 0.713 0.71 0.794 0.13
A2dele 0.641 0.603 0.672 0.16
SSF-RGBD 0.595 0.558 0.71 0.189
DisenFusion 0.675 0.658 0.76 0.16
D3Net 0.689 0.673 0.768 0.149
DMRA 0.592 0.579 0.721 0.188
CPFP 0.685 0.645 0.744 0.142
TANet 0.656 0.623 0.741 0.165
PCF 0.655 0.627 0.743 0.166
MMCI 0.660 0.641 0.754 0.176
CTMF 0.641 0.607 0.739 0.204
AFNet 0.546 0.549 0.693 0.213
DF 0.595 0.579 0.683 0.233
SE 0.435 0.393 0.587 0.283
DCMC 0.427 0.348 0.549 0.313
LBE 0.637 0.629 0.73 0.253

Acknowledgement

We thank all annotators for helping us constructing the proposed dataset. Our proposed dataset is based on the ReDWeb dataset, which is a state-of-the-art dataset proposed for monocular image depth estimation. We also thank the authors for providing the ReDWeb dataset.

Contact

If you have any questions, please feel free to contact me. (nnizhang.1995@gmail.com)