Noam Elata: GitHub
Shahar Yadin: GitHub
In this project we equip diffusion models with confidence intervals as done in the paper CONffusion: confidence intervals for diffusion models". We demonstrate that using the confidence intervals, we can solve the task of blind image inpainting, removing simple image artifacts.
Download the CelebA-HQ256 dataset and the Diffusion Model checkpoint from SDEdit.
Create a conda environment using environment.yml
.
Finetune the pretrained model using the training script for the desired quantiles:
python train.py -c configs/celeba_hq_q005.json
python train.py -c configs/celeba_hq_q095.json
Calibrate using the calibration set:
python calibrate.py -c configs/celeba_hq_q005.json \
-ml <lower quantile model checkpoint> -mh <higher quantile model checkpoint>
Run the following script:
python calibrate.py -c configs/celeba_hq_q005.json \
-ml <lower quantile model checkpoint> -mh <higher quantile model checkpoint> \
--artifact ["red", "rainbow", "butterflys"]