ZIO Kafka provides a purely functional, streams-based interface to the Kafka client. It integrates effortlessly with ZIO and ZIO Streams.
- Quickstart
- Consuming Kafka topics using ZIO Streams
- Example: consuming, producing and committing offset
- Partition assignment and offset retrieval
- Custom data type serdes
- Handling deserialization failures
- Getting help
- Credits
- Legal
Add the following dependencies to your build.sbt
file:
libraryDependencies ++= Seq(
"dev.zio" %% "zio-streams" % "1.0.2",
"dev.zio" %% "zio-kafka" % "<version>"
)
Somewhere in your application, configure the zio.kafka.ConsumerSettings
data type:
import zio._, zio.duration._
import zio.kafka.consumer._
val settings: ConsumerSettings =
ConsumerSettings(List("localhost:9092"))
.withGroupId("group")
.withClientId("client")
.withCloseTimeout(30.seconds)
For a lot of use cases where you just want to do something with all messages on a Kafka topic, ZIO Kafka provides the convenience method Consumer.consumeWith
. This method lets you execute a ZIO effect for each message. Topic partitions will be processed in parallel and offsets are committed after running the effect automatically.
import zio._
import zio.console._
import zio.kafka.consumer._
import zio.kafka.serde._
val subscription = Subscription.topics("topic")
Consumer.consumeWith(settings, subscription, Serde.string, Serde.string) { case (key, value) =>
putStrLn(s"Received message ${key}: ${value}")
// Perform an effect with the received message
}
If you require more control over the consumption process, read on!
First, create a consumer using the ConsumerSettings instance:
import zio.ZLayer, zio.ZManaged, zio.blocking.Blocking, zio.clock.Clock
import zio.kafka.consumer.{ Consumer, ConsumerSettings }
val consumerSettings: ConsumerSettings = ConsumerSettings(List("localhost:9092")).withGroupId("group")
val consumerManaged: ZManaged[Clock with Blocking, Throwable, Consumer.Service] =
Consumer.make(consumerSettings)
val consumer: ZLayer[Clock with Blocking, Throwable, Consumer] =
ZLayer.fromManaged(consumerManaged)
The consumer returned from Consumer.make
is wrapped in a ZLayer
to allow for easy composition with other ZIO environment components.
You may provide that layer to effects that require a consumer. Here's
an example:
import zio._, zio.blocking.Blocking, zio.clock.Clock
import zio.kafka.consumer._
import zio.kafka.serde._
val data: RIO[Clock with Blocking,
List[CommittableRecord[String, String]]] =
(Consumer.subscribe(Subscription.topics("topic")) *>
Consumer.plainStream(Serde.string, Serde.string).take(50).runCollect)
.provideSomeLayer(consumer)
You may stream data from Kafka using the subscribeAnd
and plainStream
methods:
import zio.blocking.Blocking, zio.clock.Clock, zio.console.putStrLn
import zio.kafka.consumer._
Consumer.subscribeAnd(Subscription.topics("topic150"))
.plainStream(Serde.string, Serde.string)
.tap(cr => putStrLn(s"key: ${cr.record.key}, value: ${cr.record.value}"))
.map(_.offset)
.aggregateAsync(Consumer.offsetBatches)
.mapM(_.commit)
.runDrain
If you need to distinguish between the different partitions assigned
to the consumer, you may use the Consumer#partitionedStream
method,
which creates a nested stream of partitions:
import zio.blocking.Blocking, zio.clock.Clock, zio.console.putStrLn
import zio.kafka.consumer._
Consumer.subscribeAnd(Subscription.topics("topic150"))
.partitionedStream(Serde.string, Serde.string)
.tap(tpAndStr => putStrLn(s"topic: ${tpAndStr._1.topic}, partition: ${tpAndStr._1.partition}"))
.flatMap(_._2)
.tap(cr => putStrLn(s"key: ${cr.record.key}, value: ${cr.record.value}"))
.map(_.offset)
.aggregateAsync(Consumer.offsetBatches)
.mapM(_.commit)
.runDrain
This example shows how to consume messages from topic topic_a
and produce transformed messages to topic_b
, after which consumer offsets are committed. Processing is done in chunks using ZStreamChunk
for more efficiency.
import zio.ZLayer
import zio.kafka.consumer._
import zio.kafka.producer._
import zio.kafka.serde._
import org.apache.kafka.clients.producer.ProducerRecord
val consumerSettings: ConsumerSettings = ConsumerSettings(List("localhost:9092")).withGroupId("group")
val producerSettings: ProducerSettings = ProducerSettings(List("localhost:9092"))
val consumerAndProducer =
ZLayer.fromManaged(Consumer.make(consumerSettings)) ++
ZLayer.fromManaged(Producer.make(producerSettings, Serde.int, Serde.string))
val consumeProduceStream = Consumer
.subscribeAnd(Subscription.topics("my-input-topic"))
.plainStream(Serde.int, Serde.long)
.map { record =>
val key: Int = record.record.key()
val value: Long = record.record.value()
val newValue: String = value.toString
val producerRecord: ProducerRecord[Int, String] = new ProducerRecord("my-output-topic", key, newValue)
(producerRecord, record.offset)
}
.mapChunksM { chunk =>
val records = chunk.map(_._1)
val offsetBatch = OffsetBatch(chunk.map(_._2).toSeq)
Producer.produceChunk[Any, Int, String](records) *> offsetBatch.commit.as(Chunk(()))
}
.runDrain
.provideSomeLayer(consumerAndProducer)
zio-kafka
offers several way to control which Kafka topics and partitions are assigned to your application.
Use case | Method |
---|---|
One or more topics, automatic partition assignment | Consumer.subscribe(Subscription.topics("my_topic", "other_topic")) |
Topics matching a pattern | Consumer.subscribe(Subscription.pattern("topic.*")) |
Manual partition assignment | Consumer.subscribe(Subscription.manual("my_topic" -> 1, "my_topic" -> 2)) |
By default zio-kafka
will start streaming a partition from the last committed offset for the consumer group, or the latest message on the topic if no offset has yet been committed. You can also choose to store offsets outside of kafka. This can be useful in cases where consistency between data stores and consumer offset is required.
Use case | Method |
---|---|
Offsets in kafka, start at latest message if no offset committed | OffsetRetrieval.Auto() |
Offsets in kafka, start at earliest message if no offset committed | OffsetRetrieval.Auto(AutoOffsetStrategy.Earliest) |
Manual/external offset storage | Manual(getOffsets: Set[TopicPartition] => Task[Map[TopicPartition, Long]]) |
For manual offset retrieval, the getOffsets
function will be called for each topic-partition that is assigned to the consumer, either via Kafka's rebalancing or via a manual assignment.
Serializers and deserializers (serdes) for custom data types can be constructed from scratch or by converting existing serdes. For example, to create a serde for an Instant
:
import java.time.Instant
import zio.kafka.serde._
val instantSerde: Serde[Any, Instant] = Serde.long.inmap(java.time.Instant.ofEpochMilli)(_.toEpochMilli)
The default behavior for a consumer stream when encountering a deserialization failure is to fail the stream. In many cases you may want to handle this situation differently, eg by skipping the message that failed to deserialize or by executing an alternative effect. For this purpose, any Deserializer[T]
for some type T
can be easily converted into a Deserializer[Try[T]]
where deserialization failures are converted to a Failure
using the asTry
method.
Below is an example of skipping messages that fail to deserialize. The offset is passed downstream to be committed.
import zio.blocking.Blocking, zio.clock.Clock, zio.console.putStrLn
import zio.stream._
import zio.kafka.consumer._
import zio.kafka.serde._
import scala.util.{Try, Success, Failure}
import zio._
val consumer = Consumer.make(consumerSettings).toLayer
val stream = Consumer
.subscribeAnd(Subscription.topics("topic150"))
.plainStream(Serde.string, Serde.string.asTry)
stream
.mapM { record =>
val tryValue: Try[String] = record.record.value()
val offset: Offset = record.offset
tryValue match {
case Success(value) =>
// Action for successful deserialization
someEffect(value).as(offset)
case Failure(exception) =>
// Possibly log the exception or take alternative action
ZIO.succeed(offset)
}
}
.aggregateAsync(Consumer.offsetBatches)
.mapM(_.commit)
.runDrain
.provideSomeLayer(consumer)
Join us on the ZIO Discord server at the #zio-kafka
channel.
This library is heavily inspired and made possible by the research and implementation done in Alpakka Kafka, a library maintained by the Akka team and originally written as Reactive Kafka by SoftwareMill.
Copyright 2020 Itamar Ravid and the zio-kafka contributors. All rights reserved.