/MiniBO

Mini Bayesian Optimization package for ACML2020 Tutorial on Bayesian Optimization

Primary LanguageJupyter NotebookMIT LicenseMIT

MiniBayesOpt

Mini Bayesian Optimization package at ACML2020 Tutorial on Bayesian Optimization

Open In Colab

Python environment

To create the working environment, please use

conda env create -f environment.yml

Demo and Visualization in 1d and 2d

demo_1dimension_BO.ipynb

Open In Colab

demo_2dimension_BO.ipynb

Open In Colab

Demo and Visualization for batch BO

demo_batch_BO.ipynb

Open In Colab

Customize your own black-box function

demo_customize_your_own_function.ipynb

Open In Colab

Dependencies

  • numpy >= 1.9.0
  • scipy >= 1.14.0
  • scikit-learn >= 0.16.1
  • tabulate >= 0.8.7
  • matplotlib>=3.1.0

Slides and Presentation

Visit http://vu-nguyen.org/BO_Part_1.pdf and http://vu-nguyen.org/BO_Part_2.pdf

Video

http://videolectures.net/acml2020_Nguyen20c/

Reference

Vu Nguyen.  "Tutorial on Recent Advances in Bayesian Optimization" Asian Conference on Machine Learning (ACML), 2020.