Aligning Knowledge Graph with Visual Perception for Object-goal Navigation (ICRA 2024)
supplementary.material.mp4
- Clone the repository and move into the top-level directory
cd AKGVP
- Create conda environment.
conda env create -f environment.yml
- Activate the environment.
conda activate akgvp
- Our settings of dataset follows previous works, please refer to HOZ and L-sTDE for AI2THOR.
- After placing the dataset, use CLIP to generate image features.
python create_image_feat.py
- For zero-shot navigation, lines 70-73 in
runners/a3c_train.py
can be enabled. In this way, certain categories will be filtered during the training.
python main.py \
--title AKGVPModel \
--model AKGVPModel \
--workers 4 \
--gpu-ids 0 \
--images-file-name clip_featuremap.hdf5
python full_eval.py \
--title AKGVPModel \
--model AKGVPModel \
--results-json AKGVPModel.json \
--gpu-ids 0 \
--images-file-name clip_featuremap.hdf5 \
--save-model-dir trained_models
python visualization.py