/aicovidvn115m

This is a 2nd place solution at AICovidVN115m competition in warmup phase.

Primary LanguageHTMLMIT LicenseMIT

AICovidVN115m - 2nd place solution of warm up phase

We build very simple and efficient models using trees and various sets of acoustic features. Due to small data and noise we aim to run multiple trials then average results to get the robust scores.

Problem

Please go to this site: https://www.covid.aihub.vn/

Prize

We donated the prize ($3M VND) to BONG SEN for COM NU CUOI. Please check the receipt in the report folder.

Usage

The experiment dag is

                +----------+                
                | download |                
                +----------+                
                      *                     
                      *                     
                      *                     
             +---------------+              
             | featurization |              
             +---------------+              
              **            **              
            **                **            
          **                    **          
+--------------+            +------------+  
| trainpredict |            | evaluation |  
+--------------+            +------------+  

Please follow these steps to reproduce:

  1. Clone this repo, go to inside and make new venv virtualenv venv
  2. Install sox: (macos) brew install sox, (linux) sudo apt install sox
  3. Activate to new venv source venv/bin/active
  4. Install required packages/libs using pip install -r requirements.txt
  5. Set params trainpredict.trials to 20 in params.yaml file.
  6. Run command dvc repro and go to data/subs to get the zip file.
  7. (Optional) Show experiment metric dvc metrics show
Path              avg_prec    roc_auc                                 
data/scores.json  0.79949     0.89643
  1. (Optional) Show experiment dvc exp show --include-params evaluation.model_index,evaluation.collection_index
┏━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Experiment              ┃ Created  ┃ avg_prec ┃ roc_auc ┃ evaluation.model_index ┃ evaluation.collection_index ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ workspace               │ -        │ 0.771    │ 0.87558 │ 1                      │ 2                           │
│ master                  │ 08:49 AM │ 0.771    │ 0.87558 │ 1                      │ 3                           │
│ ├── a17ea25 [exp-982cd] │ 10:13 AM │ 0.81382  │ 0.90145 │ 0                      │ 5                           │
│ ├── 7f21409 [exp-8d70b] │ 10:12 AM │ 0.80894  │ 0.90005 │ 0                      │ 3                           │
│ ├── f8cb8e6 [exp-33324] │ 09:53 AM │ 0.77155  │ 0.88196 │ 0                      │ 2                           │
│ ├── ed9e7f9 [exp-82a35] │ 09:39 AM │ 0.79949  │ 0.89643 │ 1                      │ 5                           │
│ ├── 158f5a9 [exp-0e5bd] │ 09:39 AM │ 0.79305  │ 0.89234 │ 1                      │ 3                           │
│ └── 2fef00f [exp-b4d92] │ 09:33 AM │ 0.771    │ 0.87558 │ 1                      │ 2                           │
└─────────────────────────┴──────────┴──────────┴─────────┴────────────────────────┴─────────────────────────────┘

  1. (Optional) fine tuning with dvc exp run -S evaluation.model_index=1 -S evaluation.collection_index=2

  2. (Optional) run multiple exps at same time

  • dvc exp run --queue -S evaluation.model_index=0 -S evaluation.collection_index=2
  • dvc exp run --queue -S evaluation.model_index=0 -S evaluation.collection_index=3
  • dvc exp run --queue -S evaluation.model_index=0 -S evaluation.collection_index=5
  • dvc exp run --run-all --jobs 3

NOTE

Evaluation is used to check single score on cross validation folds of train dataset. It's not used for making prediction. This is the end-to-end reproducible pipeline to make a submission on private test.

Extra information

  1. Total training and making predictions is about 2 hours (Macbook Pro quad-core core i5)
  • feature extraction: 825.07 seconds
  • single model evaluation: 380.57 seconds
  1. To update and add the resnet-based for the next phase.

  2. To add references of related works/papers/competitions.

  3. To run on Google Colab (~30 minutes for single trial) Open In Colab

Score by trials

References

  1. Yamnet
  2. Opensmile
  3. EPFL

License

MIT