Quantile Regulariation : Towards Implicit Calibration of Regression Models
Data links
Dataset | N | D | link |
---|---|---|---|
Airfoil | 1503 | 5 | https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise |
Boston | 506 | 13 | https://github.com/selva86/datasets/blob/master/BostonHousing.csv |
Concrete | 1030 | 8 | http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength |
Fish Toxicity | 908 | 6 | https://archive.ics.uci.edu/ml/datasets/QSAR+fish+toxicity |
Kin8nm | 8182 | 8 | https://www.openml.org/d/189 |
Protein Structure | 45730 | 9 | https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure |
Red Wine | 1599 | 11 | https://archive.ics.uci.edu/ml/datasets/wine+quality |
White Wine | 4898 | 11 | https://archive.ics.uci.edu/ml/datasets/wine+quality |
Yacht Hydrodynamics | 308 | 6 | http://archive.ics.uci.edu/ml/datasets/yacht+hydrodynamics |
Year Prediction MSD | 515345 | 90 | https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD |
Sample experiments are provided for both dropout-VI and ensemble-VI models
Dropout-VI on Airfoil without Quantile Regularization
--------------------------------
calib : 14.01 -+ 1.67
iso_calib : 19.37 -+ 3.42
rmse : 3.63 -+ 0.10
iso_rmse : 3.63 -+ 0.10
nll : 2.70 -+ 0.02
iso_nll : -1.14 -+ 0.57
time : 1.36 -+ 0.06
iso_time : 0.08 -+ 0.01
iso nll count : 18 , maximum likelihood :12022.05078125
--------------------------------
Dropout-VI on Airfoil with Quantile Regularization (lambda = 1)
----------------------------------
calib : 9.48 -+ 1.78
iso_calib : 12.73 -+ 1.46
rmse : 3.91 -+ 0.11
iso_rmse : 3.91 -+ 0.11
nll : 2.78 -+ 0.03
iso_nll : -0.76 -+ 0.32
time : 1.91 -+ 0.06
iso_time : 0.08 -+ 0.01
iso nll count : 14 , maximum likelihood :4775.97607421875
----------------------------------