/QR

Primary LanguagePython

Quantile Regulariation : Towards Implicit Calibration of Regression Models

Data links

Dataset N D link
Airfoil 1503 5 https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
Boston 506 13 https://github.com/selva86/datasets/blob/master/BostonHousing.csv
Concrete 1030 8 http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
Fish Toxicity 908 6 https://archive.ics.uci.edu/ml/datasets/QSAR+fish+toxicity
Kin8nm 8182 8 https://www.openml.org/d/189
Protein Structure 45730 9 https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
Red Wine 1599 11 https://archive.ics.uci.edu/ml/datasets/wine+quality
White Wine 4898 11 https://archive.ics.uci.edu/ml/datasets/wine+quality
Yacht Hydrodynamics 308 6 http://archive.ics.uci.edu/ml/datasets/yacht+hydrodynamics
Year Prediction MSD 515345 90 https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD

Sample experiments are provided for both dropout-VI and ensemble-VI models

Dropout-VI on Airfoil  without Quantile Regularization
--------------------------------
calib         : 14.01 -+ 1.67                     
iso_calib     : 19.37 -+ 3.42
rmse          : 3.63 -+ 0.10
iso_rmse      : 3.63 -+ 0.10
nll           : 2.70 -+ 0.02
iso_nll       : -1.14 -+ 0.57
time          : 1.36 -+ 0.06
iso_time      : 0.08 -+ 0.01
iso nll count : 18 , maximum likelihood :12022.05078125
--------------------------------
Dropout-VI on Airfoil with Quantile Regularization (lambda = 1)
----------------------------------
calib         : 9.48 -+ 1.78
iso_calib     : 12.73 -+ 1.46
rmse          : 3.91 -+ 0.11
iso_rmse      : 3.91 -+ 0.11
nll           : 2.78 -+ 0.03
iso_nll       : -0.76 -+ 0.32
time          : 1.91 -+ 0.06
iso_time      : 0.08 -+ 0.01
iso nll count : 14 , maximum likelihood :4775.97607421875

----------------------------------