I inflated the google's lasted lightweight 2d CNN model: MobileNetV3 to 3d, and got a higher precision 52% on ucf101 from scratch
Huixxi opened this issue · 2 comments
Huixxi commented
Here is the code, modified from https://github.com/d-li14/mobilenetv3.pytorch/blob/master/mobilenetv3.py 's 2D MobileNetV3:
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class h_sigmoid(nn.Module):
def __init__(self, inplace=True):
super(h_sigmoid, self).__init__()
self.relu = nn.ReLU6(inplace=inplace)
def forward(self, x):
return self.relu(x + 3) / 6
class h_swish(nn.Module):
def __init__(self, inplace=True):
super(h_swish, self).__init__()
self.sigmoid = h_sigmoid(inplace=inplace)
def forward(self, x):
return x * self.sigmoid(x)
class SELayer(nn.Module):
def __init__(self, channel, reduction=4):
super(SELayer, self).__init__()
self.fc = nn.Sequential(
nn.Linear(channel, _make_divisible(channel // reduction, 8)),
nn.ReLU6(inplace=True),
nn.Linear(_make_divisible(channel // reduction, 8), channel),
h_sigmoid()
)
def forward(self, x):
b, c, f, h, w = x.size()
y = F.avg_pool3d(x, x.data.size()[-3:]).view(b, c)
y = self.fc(y).view(b, c, 1, 1, 1)
return (x * y)
def conv_3x3x3_bn(inp, oup, stride):
return nn.Sequential(
nn.Conv3d(inp, oup, kernel_size=3, stride=stride, padding=(1,1,1), bias=False),
nn.BatchNorm3d(oup),
nn.ReLU6(inplace=True)
)
def conv_1x1x1_bn(inp, oup):
return nn.Sequential(
nn.Conv3d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm3d(oup),
nn.ReLU6(inplace=True)
)
class InvertedResidual(nn.Module):
def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs):
super(InvertedResidual, self).__init__()
self.stride = stride
self.use_res_connect = self.stride == (1,1,1) and inp == oup
if inp == hidden_dim:
self.conv = nn.Sequential(
# dw
nn.Conv3d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False),
nn.BatchNorm3d(hidden_dim),
h_swish() if use_hs else nn.ReLU6(inplace=True),
# Squeeze-and-Excite
SELayer(hidden_dim) if use_se else nn.Identity(),
# pw-linear
nn.Conv3d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm3d(oup),
)
else:
self.conv = nn.Sequential(
# pw
nn.Conv3d(inp, hidden_dim, 1, 1, 0, bias=False),
nn.BatchNorm3d(hidden_dim),
h_swish() if use_hs else nn.ReLU6(inplace=True),
# dw
nn.Conv3d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False),
nn.BatchNorm3d(hidden_dim),
# Squeeze-and-Excite
SELayer(hidden_dim) if use_se else nn.Identity(),
h_swish() if use_hs else nn.ReLU6(inplace=True),
# pw-linear
nn.Conv3d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm3d(oup),
)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV3(nn.Module):
def __init__(self, cfgs, mode, num_classes=1000, sample_size=224, width_mult=1.):
super(MobileNetV3, self).__init__()
# setting of inverted residual blocks
self.cfgs = cfgs
assert mode in ['large', 'small']
# building first layer
assert sample_size % 16 == 0.
input_channel = _make_divisible(16 * width_mult, 8)
self.features = [conv_3x3x3_bn(3, input_channel, (1, 2, 2))]
# building inverted residual blocks
block = InvertedResidual
for k, t, c, se, hs, s in self.cfgs:
output_channel = _make_divisible(c * width_mult, 8)
hidden_dim = _make_divisible(input_channel * t, 8)
self.features.append(block(input_channel, hidden_dim, output_channel, k, s, se, hs))
input_channel = output_channel
self.features.append(conv_1x1x1_bn(input_channel, hidden_dim))
# make it nn.Sequential
self.features = nn.Sequential(*self.features)
output_channel = {'large': 1280, 'small': 1024}
output_channel = _make_divisible(output_channel[mode] * width_mult, 8) if width_mult > 1.0 else output_channel[
mode]
# building classifier
self.classifier = nn.Sequential(
nn.Linear(hidden_dim, output_channel),
h_swish(),
nn.Dropout(0.2),
nn.Linear(output_channel, num_classes),
)
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = F.avg_pool3d(x, x.data.size()[-3:])
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv3d):
n = m.kernel_size[0] * m.kernel_size[1] * m.kernel_size[2] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def get_fine_tuning_parameters(model, ft_portion):
if ft_portion == "complete":
return model.parameters()
elif ft_portion == "last_layer":
ft_module_names = []
ft_module_names.append('classifier')
parameters = []
for k, v in model.named_parameters():
for ft_module in ft_module_names:
if ft_module in k:
parameters.append({'params': v})
break
else:
parameters.append({'params': v, 'lr': 0.0})
return parameters
else:
raise ValueError("Unsupported ft_portion: 'complete' or 'last_layer' expected")
def mobilenetv3_large(**kwargs):
"""
Constructs a MobileNetV3-Large model
"""
cfgs = [
# k, t, c, SE, HS, s
[3, 1, 16, 0, 0, (1, 1, 1)],
[3, 4, 24, 0, 0, (2, 2, 2)],
[3, 3, 24, 0, 0, (1, 1, 1)],
[5, 3, 40, 1, 0, (2, 2, 2)],
[5, 3, 40, 1, 0, (1, 1, 1)],
[5, 3, 40, 1, 0, (1, 1, 1)],
[3, 6, 80, 0, 1, (2, 2, 2)],
[3, 2.5, 80, 0, 1, (1, 1, 1)],
[3, 2.3, 80, 0, 1, (1, 1, 1)],
[3, 2.3, 80, 0, 1, (1, 1, 1)],
[3, 6, 112, 1, 1, (1, 1, 1)],
[3, 6, 112, 1, 1, (1, 1, 1)],
[5, 6, 160, 1, 1, (2, 2, 2)],
[5, 6, 160, 1, 1, (1, 1, 1)],
[5, 6, 160, 1, 1, (1, 1, 1)]
]
return MobileNetV3(cfgs, mode='large', **kwargs)
def mobilenetv3_small(**kwargs):
"""
Constructs a MobileNetV3-Small model
"""
cfgs = [
# k, t, c, SE, HS, s
[3, 1, 16, 1, 0, (2, 2, 2)],
[3, 4.5, 24, 0, 0, (2, 2, 2)],
[3, 3.67, 24, 0, 0, (1, 1, 1)],
[5, 4, 40, 1, 1, (2, 2, 2)],
[5, 6, 40, 1, 1, (1, 1, 1)],
[5, 6, 40, 1, 1, (1, 1, 1)],
[5, 3, 48, 1, 1, (1, 1, 1)],
[5, 3, 48, 1, 1, (1, 1, 1)],
[5, 6, 96, 1, 1, (2, 2, 2)],
[5, 6, 96, 1, 1, (1, 1, 1)],
[5, 6, 96, 1, 1, (1, 1, 1)],
]
return MobileNetV3(cfgs, mode='small', **kwargs)
def get_model(**kwargs):
"""
Returns the model.
"""
return mobilenetv3_large(**kwargs)
if __name__ == "__main__":
model = get_model(num_classes=600, sample_size=112, width_mult=1.)
model = model.cuda()
model = nn.DataParallel(model, device_ids=None)
print(model)
input_var = Variable(torch.randn(8, 3, 16, 112, 112))
output = model(input_var)
print(output.shape)
Huixxi commented
Ok, thanks.