deeplearning with scala(2.10.6) java-SE 1.8
- deeplearning with scala and spark
- Copyright liming(oldlee11)
- Email: oldlee11@163.com
- qq:568677413
<一> src/dp_process/* include :(串行基本方式实现)
LogisticRegression(逻辑回归层softmax输出)
HiddenLayer(常规神经网络的隐藏层)
Dropout(多层感知器MLP=多个HiddenLayer+LogisticRegression)
dA(对Hiddenlayer的单层预训练dA方式)
sdA(对MLP的多层预训练dA方式)
RBM(对Hiddenlayer的单层预训练RBM方式)
DBN(对MLP的多层预训练RBM方式)
ConvPoolLayer(卷积层+max池化层)
CNN(卷积神经网络=多个ConvPoolLayer+Dropout)
RNN(多层卷积升级网络=多层RNN_HiddenLayer+1层RNN_LogisticRegression,没有实现lstm,支持多层的mlp的递归)
CNN+dA(卷积神经网络+dA方式预训练[不确定是否完全正确])
使用minst数据集做实验
sdA:88.17%
DBN:88.7%
CNN(lenet5):90.3%
<二> src/dp_process_parallel/* include :(并行方式实现)
Dropout_parallel=多个HiddenLayer_parallel+LogisticRegression_parallel
CNN_parallel=多个ConvPoolLayer_parallel+Dropout_parallel
使用minst数据集做实验
Dropout(mlp):86.22%
CNN(lenet5):96.08%
<三> src/dp_process_breeze/* include :(breeze+并行方式实现)
..使用breeze blas jblas包