/coarse-to-fine-chin-editing

double-chin-dataset is a high-quality image dataset of double chin removal, based on StyleGAN.

chin-editing-dataset

chin-editing

chin-editing-dataset is a high-quality image dataset of double chin editing, based on StyleGAN2.

The dataset is built by our diffusion method(See the Section3.4 in our paper)

Coarse-to-Fine: Facial Structure Editing of Portrait Images via Latent Space Classifications
Yiqian Wu, Yongliang Yang, Qinjie Xiao,Xiaogang Jin*.
ACM Transactions on Graphics (Proc. of Siggraph'2021), 2021, 40(4): Article 46.

Project Paper Suppl Video Dataset Github

We create the first large-scale chin editing dataset to facilitate future research. The dataset contains 14,788 pairs of realistic portrait images at 1024×1024 resolution with and without a double chin and their corresponding latent codes.

All the images are synthetic and generated by StyleGAN2.

Overview

google drive link of the dataset: https://drive.google.com/drive/folders/10e6WB4YLb3Mn6Us4mPAgBksGr7kBx8q0?usp=sharing

dir information
double_chin_pair_psi_0.5 data for truncation_psi-0.5
│ ├ codes latent codes. {img_id}_wp.npy : the original latent code, {img_id}_inverted_WP_codes.npy : the latent code after removing double chin.
│ ├ diffused the images that generated directly from {img_id}_inverted_WP_codes.npy
│ ├ res results images , {img_id}.jpg
│ └ origin original images, {img_id}.jpg
double_chin_pair_psi_0.8 data for truncation_psi-0.8
│ ├ codes latent codes. {img_id}_wp.npy : the original latent code, {img_id}_inverted_wp.npy : the latent code after removing double chin.
│ ├ res results images, {img_id}.jpg
│ └ origin original images, {img_id}.jpg

Related Works

Analyzing and Improving the Image Quality of StyleGAN
Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila

Agreement

  • The chin-editing-dataset is available for non-commercial research purposes only.

Citation

@article{DBLP:journals/tog/WuYX021,
  author    = {Yiqian Wu and
               Yong{-}Liang Yang and
               Qinjie Xiao and
               Xiaogang Jin},
  title     = {Coarse-to-fine: facial structure editing of portrait images via latent
               space classifications},
  journal   = {{ACM} Trans. Graph.},
  volume    = {40},
  number    = {4},
  pages     = {46:1--46:13},
  year      = {2021}
}

Contact

onethousand@zju.edu.cn

onethousand1250@gmail.com