MyEtherWallet V4+ (ALPHA - VISIT V3 for the production site)
npm run dev # run app in dev mode
npm run build # build app
It generates app in dist
folder.
npm run test # run tests with Jest
npm run test:int # run tests with Jest
- Create your own SSL Certificate (Heroku has a nice guide here)
- Move the
.key
and.crt
files intowebpack_config/server.*
- Run the following command:
npm run dev:https
EthereumJS-Util previously contained a bug that would incorrectly derive addresses from private keys with a 1/128 probability of occurring. A summary of this issue can be found here.
As a reactionary measure, the address derivation checker was created.
To test for correct address derivation, the address derivation checker uses multiple sources of address derivation (EthereumJS and PyEthereum) to ensure that multiple official implementations derive the same address for any given private key.
- Docker installed/available
- dternyak/eth-priv-to-addr pulled from DockerHub
- Install docker (on macOS, Docker for Mac is suggested)
docker pull dternyak/eth-priv-to-addr
The derivation checker utility runs as part of the integration test suite.
npm run test:int
│
├── common
│ ├── actions - application actions
│ ├── api - Services and XHR utils
│ ├── components - components according to "Redux philosophy"
│ ├── config - frontend config depending on REACT_WEBPACK_ENV
│ ├── containers - containers according to "Redux philosophy"
│ ├── reducers - application reducers
│ ├── routing - application routing
│ ├── index.tsx - entry
│ ├── index.html
├── static
├── webpack_config - Webpack configuration
├── jest_config - Jest configuration
The following are guides for developers to follow for writing compliant code.
Each reducer has one file in reducers/[namespace].ts
that contains the reducer
and initial state, one file in actions/[namespace].ts
that contains the action
creators and their return types, and optionally one file in
sagas/[namespace].ts
that handles action side effects using
redux-saga
.
The files should be laid out as follows:
- State should be explicitly defined and exported
- Initial state should match state typing, define every key
import { NamespaceAction } from "actions/[namespace]";
import { TypeKeys } from 'actions/[namespace]/constants';
export interface State { /* definition for state object */ };
export const INITIAL_STATE: State = { /* Initial state shape */ };
export function [namespace](
state: State = INITIAL_STATE,
action: NamespaceAction
): State {
switch (action.type) {
case TypeKeys.NAMESPACE_NAME_OF_ACTION:
return {
...state,
// Alterations to state
};
default:
return state;
}
}
- Define each action creator in
actionCreator.ts
- Define each action object type in
actionTypes.ts
- Export a union of all of the action types for use by the reducer
- Define each action type as a string enum in
constants.ts
- Export
actionCreators
andactionTypes
from module fileindex.ts
├── common
├── actions - application actions
├── [namespace] - action namespace
├── actionCreators.ts - action creators
├── actionTypes.ts - action interfaces / types
├── constants.ts - string enum
├── index.ts - exports all action creators and action object types
export enum TypeKeys {
NAMESPACE_NAME_OF_ACTION = 'NAMESPACE_NAME_OF_ACTION'
}
/*** Name of action ***/
export interface NameOfActionAction {
type: TypeKeys.NAMESPACE_NAME_OF_ACTION,
/* Rest of the action object shape */
};
/*** Action Union ***/
export type NamespaceAction =
| ActionOneAction
| ActionTwoAction
| ActionThreeAction;
import * as interfaces from './actionTypes';
import { TypeKeys } from './constants';
export interface TNameOfAction = typeof nameOfAction;
export function nameOfAction(): interfaces.NameOfActionAction {
return {
type: TypeKeys.NAMESPACE_NAME_OF_ACTION,
payload: {}
};
};
export * from './actionCreators';
export * from './actionTypes';
Components that receive props directly from redux as a result of the connect
function should use AppState for typing, rather than manually defining types.
This makes refactoring reducers easier by catching mismatches or changes of
types in components, and reduces the chance for inconsistency. It's also less
code overall.
// Do this
import { AppState } from 'reducers';
interface Props {
wallet: AppState['wallet']['inst'];
rates: AppState['rates']['rates'];
// ...
}
// Not this
import { IWallet } from 'libs/wallet';
import { Rates } from 'libs/rates';
interface Props {
wallet: IWallet;
rates: Rates;
// ...
}
However, if you have a sub-component that takes in props from a connected component, it's OK to manually specify the type. Especially if you go from being type-or-null to guaranteeing the prop will be passed (because of a conditional render.)
Props made available through higher order components can be tricky to type. Normally, if a component requires a prop, you add it to the component's interface and it just works. However, working with injected props from higher order components, you will be forced to supply all required props whenever you compose the component.
interface MyComponentProps {
name: string;
countryCode?: string;
routerLocation: { pathname: string };
}
...
class OtherComponent extends React.Component<{}, {}> {
render() {
return (
<MyComponent
name="foo"
countryCode="CA"
// Error: 'routerLocation' is missing!
/>
);
}
Instead of tacking the injected props on the MyComponentProps interface, put them in another interface called InjectedProps
:
interface MyComponentProps {
name: string;
countryCode?: string;
}
interface InjectedProps {
routerLocation: { pathname: string };
}
Now add a getter to cast this.props
as the original props - MyComponentProps
and the injected props - InjectedProps
:
class MyComponent extends React.Component<MyComponentProps, {}> {
get injected() {
return this.props as MyComponentProps & InjectedProps;
}
render() {
const { name, countryCode, routerLocation } = this.props;
...
}
}
Event handlers such as onChange
and onClick
, should be properly typed. For example, if you have an event listener on an input element inside a form:
public onValueChange = (e: React.FormEvent<HTMLInputElement>) => {
if (this.props.onChange) {
this.props.onChange(
e.currentTarget.value,
this.props.unit
);
}
};
Where you type the event as a React.FormEvent
of type HTML<TYPE>Element
.
Dynamic class names should use the classnames
module to simplify how they are created instead of using string template literals with expressions inside.
Legacy styles are housed under common/assets/styles
and written with LESS.
However, going forward, each styled component should create a a .scss
file of
the same name in the same folder, and import it like so:
import React from "react";
import "./MyComponent.scss";
export default class MyComponent extends React.component<{}, {}> {
render() {
return (
<div className="MyComponent">
<div className="MyComponent-child">Hello!</div>
</div>
);
}
}
These style modules adhere to SuitCSS naming convention:
.MyComponent {
/* Styles */
&-child {
/* Styles */
&.is-hidden {
display: none;
}
}
}
All elements inside of a component should extend its parent class namespace, or create a new namespace (Potentially breaking that out into its own component.)
Variables and mixins can be imported from the files in common/styles
:
@import "sass/colors";
code {
color: $code-color;
}
When working on a module that has styling in Less, try to do the following:
- Screenshot the component in question
- Create a new SCSS file in the same directory
- Remove styling from LESS file, convert it to the SCSS file (Mostly s/@/$)
- Convert class names to SuitCSS naming convention
- Convert any utility classes from
etherewallet-utilities.less
into mixins - Convert as many element selectors to class name selectors as possible
- Convert as many
<br/>
tags or
s to margins - Ensure that there has been little to no deviation from screenshot
- Download chosen icon-font
- Declare css font-family:
@font-face { font-family: 'social-media'; src: url('../assets/fonts/social-media.eot'); src: url('../assets/fonts/social-media.eot') format('embedded-opentype'), url('../assets/fonts/social-media.woff2') format('woff2'), url('../assets/fonts/social-media.woff') format('woff'), url('../assets/fonts/social-media.ttf') format('truetype'), url('../assets/fonts/social-media.svg') format('svg'); font-weight: normal; font-style: normal; }
- Create classes for each icon using their unicode character
.sm-logo-facebook:before { content: '\ea02'; }
- Write some markup:
<a href="/"> <i className={`sm-icon sm-logo-${text} sm-24px`} /> Hello World </a>
Cross browser testing and debugging provided by the very lovely team at BrowserStack.