cis_trans.R: Classify cis/trans inheritance pattern using inbred/hybrid expression, in basic mode or differential mode
$ ./cis_trans.R -h
usage: ./cis_trans.R [-h] [--mode MODE] [--min_rc MIN_RC] [--n_cpu N_CPU]
f_rc f_sf f_dsp fo
Classify cis/trans inheritance pattern using inbred/hybrid RNA-Seq read counts
positional arguments:
f_rc read count table
f_sf sample-wise size factor table
f_dsp gene-wise dispersion table
fo output file
optional arguments:
-h, --help show this help message and exit
--mode MODE cis/trans test mode, "basic" for steady-state cis/trans
test and "diff" for control/treatment differential test
[default: basic]
--min_rc MIN_RC minimum read counts to filter low-expressed genes [default:
10]
--n_cpu N_CPU number of CPUs / threads to use for parallel processing
(for spped up if you have many genes) [default: 1]
kmer.py: kmer utilities, use kmer.py -h to find out more
usage: kmer.py [-h] {locate,prepare_ml,getfasta} ...
kmer utilities
optional arguments:
-h, --help show this help message and exit
available commands:
{locate,prepare_ml,getfasta}
locate find given kmers in sequence database and report
locations
prepare_ml locate given kmers forgiven IDsin sequence db using
various filters and prepare output for ML
getfasta extract fasta forgiven IDsin sequence db using
various filters
usage: fimo.py [-h] {locate,filter,bed2wide,prepare_ml} ...
fimo utilities
optional arguments:
-h, --help show this help message and exit
available commands:
{locate,filter,bed2wide,prepare_ml}
locate run fimo to find given motifs in input sequences
filter filter BED file using window size / epigenetic marks
bed2wide convert BED file to machine learing tables
prepare_ml pipeline to find motifs and output in BED / ML input
table
streme.py: wrapper around STRME from the meme-suite, output a meme file with found motifs and a tabular file with the exact motif locations
usage: streme.py [-h] {addscore,xml2tsv,pipe} ...
STREME utilities
optional arguments:
-h, --help show this help message and exit
available commands:
{addscore,xml2tsv,pipe}
addscore add score_thresh to STREME output
xml2tsv convert STREME xml output to tsv
pipe run STREME pipeline
merge.fimo.R: read multiple FIMO outputs and save as a tibble in R
merge.dreme.kmer.R: read multiple meme outputs after running DREME/STRME and save as a tibble in R
merge.dreme.fimo.R: read multiple motif location outputs after running DREME/STRME and save as a tibble in R
merge.dreme.R: read multiple DREME outputs save as a tibble in R
usage: /home/springer/zhoux379/git/nf/bin/mmm/merge.dreme.R
[-h] [-o output] [--meme meme] [--txt list] fi [fi ...]
merge dreme outputs
positional arguments:
fi dreme output file(s)
optional arguments:
-h, --help show this help message and exit
-o output output file [default: out.rds]
--meme meme merged motifs in meme format [default: out.meme]
--txt list motif ID list [default: out.txt]
ml_classification.R: train a machine learning model using RF/XGB/SVM algorithm, specifying holdout proportion, with down-sampling, using cross-validation, grid searching for hyperparameters in parallel, for detailed usage run ml_classification.R -h
usage: /home/springer/zhoux379/git/nf/bin/mmm/ml_classification.R
[-h] [--perm PERM] [--alg ALG] [--holdout HOLDOUT] [--fold FOLD]
[--fold_repeat FOLD_REPEAT] [--nlevel NLEVEL] [--downsample]
[--seed SEED] [--response RESPONSE] [--cpu CPU]
fi fo1
Run machine learning classification on given dataset
positional arguments:
fi input dataset
fo1 output metrics file
optional arguments:
-h, --help show this help message and exit
--perm PERM number permutations [default: 1]
--alg ALG ML algorithm [default: rf]
--holdout HOLDOUT proportion data to hold out fortest [default: 0.8]
--fold FOLD cv fold [default: 5]
--fold_repeat FOLD_REPEAT
repeat in each cv [default: 1]
--nlevel NLEVEL levels of hyperparameters to tune [default: 3]
--downsample downsample to get balanced [default: False]
--seed SEED random seed [default: 26]
--response RESPONSE response variable name [default: status]
--cpu CPU num. processors to use [default: 1]
ml_predict.R: read a trained model and predict outcome of a new dataset, for detailed usage run ml_predict.R -h
usage: /home/springer/zhoux379/git/nf/bin/mmm/ml_predict.R [-h] fm fi fo
Make predictions using trained model on given dataset
positional arguments:
fm (ML) model file
fi input dataset
fo output file to save predictions
optional arguments:
-h, --help show this help message and exit