/pde-net

Primary LanguagePython

PDE-Net

The code are for the paper

PDE-Net: Learning PDEs from Data(ICML 2018)
Long Zichao, Lu Yiping, Ma Xianzhong and Dong Bin

If you find the code useful in your research then please cite

@inproceedings{long2018pde,
  title={PDE-Net: Learning PDEs from Data},
  author={Long, Zichao and Lu, Yiping and Ma, Xianzhong and Dong, Bin},
  booktitle={International Conference on Machine Learning},
  pages={3214--3222},
  year={2018}
}

Setup

All code were developed and tested on CentOS 7 with Python 3.6, and were implemented by pytorch 0.3.1

The code are based on a submodule: aTEAM, a pyTorch Extension for Applied Mathematics. One can either download a proper version of aTEAM and extract it to some directory in your python path with name 'aTEAM', or use 'git submodule' to set up the dependency.

For example, you can create a conda environment and set up PDE-Net like this:

conda create -n PDE-Net python=3.6 scipy pyyaml jupyter matplotlib
source activate PDE-Net
conda install pytorch=0.3.1 torchvision cuda90 -c pytorch
git clone git@github.com:ZichaoLong/PDE-Net.git
cd PDE-Net
git checkout PDE-Net # switch your branch from 'master' to the 'PDE-Net'
git submodule init
git submodule update

Training, Testing and Plot

Model example of config file training testing plot
Convection-Diffusion Equations checkpoint/linpde.yaml learn_variantcoelinear2d.py linpdetest.py linpdeplot.py
Diffusion Equations with Nonlinear Source checkpoint/nonlinpde.yaml learn_singlenonlinear2d.py nonlinpdetest.py nonlinpdeplot.py

Training

  • Default options can be found in learn_variantcoelinear.py and learn_singlenonlinear2d.py. You can simply modify the default options in learn_variantcoelinear.py(learn_singlenonlinear2d.py), and simply run code like:
python learn_variantcoelinear2d.py
  • Configure training by command line options:
TASKDESCRIPTOR=linpde-test
python learn_variantcoelinear2d.py --taskdescriptor=$TASKDESCRIPTOR \
  --kernel_size=7 --max_order=4 --constraint=moment

Training information and learned parameters will be stored in checkpoint/${TASKDESCRIPTOR}.

Testing

python linpdetest.py $TASKDESCRIPTOR
# or python nonlinpdetest.py $TASKDESCRIPTOR

Then the testing results will be stored in checkpoint/$TASKDESCRIPTOR/errs.pkl.

Show Results

Set your TASKDESCRIPTOR in *test.py, *plot.py, errs_compare.py and run.

Pretrained Model

Download pretrained models and make your working directory like this:

PDE-Net/
  aTEAM/
  figures/
  learn_variantcoelinear2d.py
  linpdetest.py
  ...
  checkpoint/
      linpde5x5frozen4order0.015dt0.015noise-double/
      linpde5x5moment4order0.015dt0.015noise-double/
      linpde7x7frozen4order0.015dt0.015noise-double/
      linpde7x7moment4order0.015dt0.015noise-double/
      nonlinpde7x7frozen2order-double/
      nonlinpde7x7moment2order-double/