@article{ozyegendnnlits,
title={Dnnlits: Deep Neural Networks for Locally Interpretable Time Series Forecasting},
author={Ozyegen, Ozan and Cevik, Mucahit and Basar, Ayse},
journal={Available at SSRN 4179881}
}
- Train single model
python exps/run_single.py
- Tune a dataset-model pair via optuna framework
python exps/run_tuning.py
- Analyze the model performances
python exps/review_results.ipynb
- Analyze model forecasts and explanations
python notebooks/polar_rnn_rossmann.ipynb
- A trained Rossmann
$DNNLITS^{RNN}$ model checkpoint is available undermodels/3r5uvsl1
- python 3.8
- pytorch 1.11
- pytorch-forecasting 0.10.1
- wandb - Weights and Biases is used for tracking the experiments
- exp_ts.yml contains all the package dependencies