Pinned Repositories
apa6-turkish-latex-template
apa6 Türkçe Latex Döküman Taslağı - TUBİTAK Proje Yarışmasına Kullanılmıştır.
Diebold_BondYield
Recreation of Diebold and Li: Forecasting the term structure of government bond yields in python.
Django-Kitap-Satis
Django-Kitap-Satis2
dlaicourse
Notebooks for learning deep learning
eys2019
Machine-Learning
Machine-Learning-with-Python
Python code for common Machine Learning Algorithms
Otel-Rezervasyon-Sistemi
Personel-Sistemi
Java based desktop application.
ozturkc's Repositories
ozturkc/apa6-turkish-latex-template
apa6 Türkçe Latex Döküman Taslağı - TUBİTAK Proje Yarışmasına Kullanılmıştır.
ozturkc/Diebold_BondYield
Recreation of Diebold and Li: Forecasting the term structure of government bond yields in python.
ozturkc/Django-Kitap-Satis
ozturkc/Django-Kitap-Satis2
ozturkc/dlaicourse
Notebooks for learning deep learning
ozturkc/eys2019
ozturkc/Machine-Learning
ozturkc/Machine-Learning-with-Python
Python code for common Machine Learning Algorithms
ozturkc/Otel-Rezervasyon-Sistemi
ozturkc/Personel-Sistemi
Java based desktop application.
ozturkc/Predictive_Maintenance_w_LSTM
Predictive_Maintenance_of_AircraftMotorHealth_with_LSTM_Method
ozturkc/r
R Uygulamalı Ekonometri
ozturkc/Sifirdan-Ileri-Seviyeye-Python-Programlama
Udemy üzerindeki Python kurslarında kullanılan materyaller
ozturkc/Stock-price-prediction-using-GAN
In this project, we will compare two algorithms for stock prediction. First, we will utilize the Long Short Term Memory(LSTM) network to do the Stock Market Prediction. LSTM is a powerful method that is capable of learning order dependence in sequence prediction problems. Furthermore, we will utilize Generative Adversarial Network(GAN) to make the prediction. LSTM will be used as a generator, and CNN as a discriminator. In addition, Natural Language Processing(NLP) will also be used in this project to analyze the influence of News on stock prices.
ozturkc/stockpredictionai
In this noteboook I will create a complete process for predicting stock price movements. Follow along and we will achieve some pretty good results. For that purpose we will use a Generative Adversarial Network (GAN) with LSTM, a type of Recurrent Neural Network, as generator, and a Convolutional Neural Network, CNN, as a discriminator. We use LSTM for the obvious reason that we are trying to predict time series data. Why we use GAN and specifically CNN as a discriminator? That is a good question: there are special sections on that later.
ozturkc/tasarim-desenleri-turkce-kaynak
Türkçe kaynağa destek olması amacıyla oluşturulmuş bir kaynaktır. Konu anlatımının yanı sıra C#, Java, Go, Python, Kotlin ve TypeScript gibi birçok dilde tasarım desenlerinin uygulamasını içermektedir.
ozturkc/yield-curve-forecasting
This repository provides the implementation of a handful of forecasting methods in yield curve modelling.
ozturkc/Yield_Curve_Forecasting
First commit.