/earth_system_model_gan_bias_correction

Generative adversarial networks for Earth system modell bias correction

Primary LanguageJupyter NotebookMIT LicenseMIT

Generative Adversarial Networks for Improving Earth System Model Precipitation

Description

This repository contains the code for the training a cycle consistent generative adversarial network on Earth system model output data for bias correction.

Requirements

The dependencies are installed in a Singularity container that can be pulled from

singularity pull --arch amd64 library://phess/pytorch-stack/stack.sif:v3

Data

Usage

Training:

  1. Define the parameters and file paths in src/configuration.py
  2. run:
 singularity run --nv --bind /path/to/current/directory /path/to/container/stack_v3.sif python main.py

Evaluation:

To evaluate the results define parameters and paths in src/configuration.py and use the Jupyther notebooks:

  • Evaluation of the GAN model checkpoints: notebooks/summary-statistics.ipynb
  • Comparison of the GAN model and baselines: notebooks/analysis-combined-results.ipynb
  • Evaluation of spectral densities: notebooks/analysis-spectral-density.ipynb
  • Evaluation of fractals: notebooks/analysis-fractal-dimension.ipynb

To start Jupyter Lab run:

 singularity run --nv --bind /path/to/current/directory /path/to/container/stack_v3.sif jupyter-lab