This repository provides a Windows-focused Gradio GUI for Kohya's Stable Diffusion trainers. The GUI allows you to set the training parameters and generate and run the required CLI commands to train the model.
- Tutorials
- Installation
- Upgrading
- Starting GUI Service
- Dreambooth
- Finetune
- Train Network
- LoRA
- Sample image generation during training
- Troubleshooting
- Page File Limit
- No module called tkinter
- FileNotFoundError
- Change History
How to Create a LoRA Part 1: Dataset Preparation:
How to Create a LoRA Part 2: Training the Model:
Newer Tutorial: Generate Studio Quality Realistic Photos By Kohya LoRA Stable Diffusion Training:
Newer Tutorial: How To Install And Use Kohya LoRA GUI / Web UI on RunPod IO:
To install the necessary dependencies on a Windows system, follow these steps:
-
Install Python 3.10.
- During the installation process, ensure that you select the option to add Python to the 'PATH' environment variable.
-
Install Git.
-
Install the Visual Studio 2015, 2017, 2019, and 2022 redistributable.
To set up the project, follow these steps:
-
Open a terminal and navigate to the desired installation directory.
-
Clone the repository by running the following command:
git clone https://github.com/bmaltais/kohya_ss.git
-
Change into the
kohya_ss
directory:cd kohya_ss
-
Run the setup script by executing the following command:
.\setup.bat
The following steps are optional but can improve the learning speed for owners of NVIDIA 30X0/40X0 GPUs. These steps enable larger training batch sizes and faster training speeds.
Please note that the CUDNN 8.6 DLLs needed for this process cannot be hosted on GitHub due to file size limitations. You can download them here to boost sample generation speed (almost 50% on a 4090 GPU). After downloading the ZIP file, follow the installation steps below:
-
Unzip the downloaded file and place the
cudnn_windows
folder in the root directory of thekohya_ss
repository. -
Run .\setup.bat and select the option to install cudann.
To install the necessary dependencies on a Linux system, ensure that you fulfill the following requirements:
-
Ensure that
venv
support is pre-installed. You can install it on Ubuntu 22.04 using the command:apt install python3.10-venv
-
Install the cudaNN drivers by following the instructions provided in this link.
-
Make sure you have Python version 3.10.6 or higher (but lower than 3.11.0) installed on your system.
-
If you are using WSL2, set the
LD_LIBRARY_PATH
environment variable by executing the following command:export LD_LIBRARY_PATH=/usr/lib/wsl/lib/
To set up the project on Linux or macOS, perform the following steps:
-
Open a terminal and navigate to the desired installation directory.
-
Clone the repository by running the following command:
git clone https://github.com/bmaltais/kohya_ss.git
-
Change into the
kohya_ss
directory:cd kohya_ss
-
If you encounter permission issues, make the
setup.sh
script executable by running the following command:chmod +x ./setup.sh
-
Run the setup script by executing the following command:
./setup.sh
Note: If you need additional options or information about the runpod environment, you can use
setup.sh -h
orsetup.sh --help
to display the help message.
The default installation location on Linux is the directory where the script is located. If a previous installation is detected in that location, the setup will proceed there. Otherwise, the installation will fall back to /opt/kohya_ss
. If /opt
is not writable, the fallback location will be $HOME/kohya_ss
. Finally, if none of the previous options are viable, the installation will be performed in the current directory.
For macOS and other non-Linux systems, the installation process will attempt to detect the previous installation directory based on where the script is run. If a previous installation is not found, the default location will be $HOME/kohya_ss
. You can override this behavior by specifying a custom installation directory using the -d
or --dir
option when running the setup script.
If you choose to use the interactive mode, the default values for the accelerate configuration screen will be "This machine," "None," and "No" for the remaining questions. These default answers are the same as the Windows installation.
To install the necessary components for Runpod and run kohya_ss, follow these steps:
-
Select the Runpod pytorch 2.0.1 template. This is important. Other templates may not work.
-
SSH into the Runpod.
-
Clone the repository by running the following command:
cd /workspace git clone https://github.com/bmaltais/kohya_ss.git
-
Run the setup script:
cd kohya_ss ./setup-runpod.sh
-
Run the gui with:
./gui.sh --share --headless
or with this if you expose 7860 directly via the runpod configuration
./gui.sh --listen=0.0.0.0 --headless
-
Connect to the public URL displayed after the installation process is completed.
To run from a pre-built Runpod template you can:
-
Open the Runpod template by clicking on https://runpod.io/gsc?template=ya6013lj5a&ref=w18gds2n
-
Deploy the template on the desired host
-
Once deployed connect to the Runpod on HTTP 3010 to connect to kohya_ss GUI. You can also connect to auto1111 on HTTP 3000.
If you prefer to use Docker, follow the instructions below:
-
Ensure that you have Git and Docker installed on your Windows or Linux system.
-
Open your OS shell (Command Prompt or Terminal) and run the following commands:
git clone https://github.com/bmaltais/kohya_ss.git cd kohya_ss docker compose build docker compose run --service-ports kohya-ss-gui
Note: The initial run may take up to 20 minutes to complete.
Please be aware of the following limitations when using Docker:
- All training data must be placed in the
dataset
subdirectory, as the Docker container cannot access files from other directories. - The file picker feature is not functional. You need to manually set the folder path and config file path.
- Dialogs may not work as expected, and it is recommended to use unique file names to avoid conflicts.
- There is no built-in auto-update support. To update the system, you must run update scripts outside of Docker and rebuild using
docker compose build
.
If you are running Linux, an alternative Docker container port with fewer limitations is available here.
- All training data must be placed in the
You may want to use the following Dockerfile repos to build the images:
- Standalone Kohya_ss template: https://github.com/ashleykleynhans/kohya-docker
- Auto1111 + Kohya_ss GUI template: https://github.com/ashleykleynhans/stable-diffusion-docker
To upgrade your installation to a new version, follow the instructions below.
If a new release becomes available, you can upgrade your repository by running the following commands from the root directory of the project:
-
Pull the latest changes from the repository:
git pull
-
Run the setup script:
.\setup.bat
To upgrade your installation on Linux or macOS, follow these steps:
- Open a terminal and navigate to the root
directory of the project.
-
Pull the latest changes from the repository:
git pull
-
Refresh and update everything:
./setup.sh
To launch the GUI service, you can use the provided scripts or run the kohya_gui.py
script directly. Use the command line arguments listed below to configure the underlying service.
--listen: Specify the IP address to listen on for connections to Gradio.
--username: Set a username for authentication.
--password: Set a password for authentication.
--server_port: Define the port to run the server listener on.
--inbrowser: Open the Gradio UI in a web browser.
--share: Share the Gradio UI.
On Windows, you can use either the gui.ps1
or gui.bat
script located in the root directory. Choose the script that suits your preference and run it in a terminal, providing the desired command line arguments. Here's an example:
gui.ps1 --listen 127.0.0.1 --server_port 7860 --inbrowser --share
or
gui.bat --listen 127.0.0.1 --server_port 7860 --inbrowser --share
To launch the GUI on Linux or macOS, run the gui.sh
script located in the root directory. Provide the desired command line arguments as follows:
gui.sh --listen 127.0.0.1 --server_port 7860 --inbrowser --share
For specific instructions on using the Dreambooth solution, please refer to the Dreambooth README.
For specific instructions on using the Finetune solution, please refer to the Finetune README.
For specific instructions on training a network, please refer to the Train network README.
To train a LoRA, you can currently use the train_network.py
code. You can create a LoRA network by using the all-in-one GUI.
Once you have created the LoRA network, you can generate images using auto1111 by installing this extension.
The following are the names of LoRA types used in this repository:
-
LoRA-LierLa: LoRA for Linear layers and Conv2d layers with a 1x1 kernel.
-
LoRA-C3Lier: LoRA for Conv2d layers with a 3x3 kernel, in addition to LoRA-LierLa.
LoRA-LierLa is the default LoRA type for train_network.py
(without conv_dim
network argument). You can use LoRA-LierLa with our extension for AUTOMATIC1111's Web UI or the built-in LoRA feature of the Web UI.
To use LoRA-C3Lier with the Web UI, please use our extension.
A prompt file might look like this, for example:
# prompt 1
masterpiece, best quality, (1girl), in white shirts, upper body, looking at viewer, simple background --n low quality, worst quality, bad anatomy, bad composition, poor, low effort --w 768 --h 768 --d 1 --l 7.5 --s 28
# prompt 2
masterpiece, best quality, 1boy, in business suit, standing at street, looking back --n (low quality, worst quality), bad anatomy, bad composition, poor, low effort --w 576 --h 832 --d 2 --l 5.5 --s 40
Lines beginning with #
are comments. You can specify options for the generated image with options like --n
after the prompt. The following options can be used:
--n
: Negative prompt up to the next option.--w
: Specifies the width of the generated image.--h
: Specifies the height of the generated image.--d
: Specifies the seed of the generated image.--l
: Specifies the CFG scale of the generated image.--s
: Specifies the number of steps in the generation.
The prompt weighting such as ( )
and [ ]
are working.
If you encounter any issues, refer to the troubleshooting steps below.
If you encounter an X error related to the page file, you may need to increase the page file size limit in Windows.
If you encounter an error indicating that the module tkinter
is not found, try reinstalling Python 3.10 on your system.
If you come across a FileNotFoundError
, it is likely due to an installation issue. Make sure you do not have any locally installed Python modules that could conflict with the ones installed in the virtual environment. You can uninstall them by following these steps:
-
Open a new PowerShell terminal and ensure that no virtual environment is active.
-
Run the following commands to create a backup file of your locally installed pip packages and then uninstall them:
pip freeze > uninstall.txt pip uninstall -r uninstall.txt
After uninstalling the local packages, redo the installation steps within the
kohya_ss
virtual environment.
- 2023/06/26 (v21.7.16)
- Improve runpod installation
- Add release info to GUI
- Sunc with sd-script repo
- Backrev bitsandbytes 0.39.1 on Linux to 0.35.0 because it was giving bad results
- 2023/06/25 (v21.7.15)
- Improve runpod installation
- 2023/06/24 (v21.7.14)
- To address training errors caused by the global revert of bitsandbytes-windows for Windows users, I recommend the following steps:
Delete the venv folder. Execute the setup.bat file by running .\setup.bat
By following these instructions, Windows users can effectively undo the problematic bitsandbytes module and resolve the training errors.
- 2023/06/24 (v21.7.13)
- Emergency fix for accelerate version that was bumped for other platforms than windows torch 2
- 2023/06/24 (v21.7.12)
- Significantly improved the setup process on all platforms
- Better support for runpod
- 2023/06/23 (v21.7.11)
- This is a significant update to how setup work across different platform. It might be causing issues... especially for linux env like runpod. If you encounter problems please report them in the issues so I can try to address them. You can revert to the previous release with
git checkout v21.7.10
The setup solution is now much more modulat and will simplify requirements support across different environments... hoping this will make it easier to run on different OS.
- 2023/06/19 (v21.7.10)
- Quick fix for linux GUI startup where it would try to install darwin requirements on top of linux. Ugly fix but work. Hopefulle some linux user will improve via a PR.