A Style-Based Generator Architecture for Generative Adversarial Networks
https://arxiv.org/abs/1812.04948
opencv-python
python-gflags
Augmentor
h5py
Pillow
scipy
mpi4py
chainer >= 5.0.0
cupy >= 5.0.0
- NVIDIA driver 391.35 or newer, CUDA toolkit 9.0 or newer, cuDNN 7.3.1 or newer.
- NCCL2
- A graphic card with at least 11GB memory to train the 1024x1024 model.
- Tested on 8 Tesla P100.
- Please follow ffhq-dataset to obtain the ffhq dataset.
python download_ffhq.py -h -i
- Convert raw ffhq images to a HDF5 file. (Around 198GB)
cd src/hdf5_tools
bash folder_to_multisize_hdf5_cmds.sh 1 YOUR_PATH_TO_RAW_FFHQ_IMAGES
- 8 GPUs setting
cd src/stylegan
bash run_ffhq.sh 2
- 1 GPU setting (up to 256x256)
cd src/stylegan
bash run_ffhq.sh 1