/yolov5face_torchserve_tensorrt

Torchserve + TensorRT + Detection

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

Face Detection Server with Torchserve and TensorRT (torch2trt)

Inference yolov5_face model with Torchserve and TensorRT backend(recommended)with 11ms latency,query per second (QPS) 700 on T4 GPU server

Traditional Torchserve pipeline with Jit TorchScript backend see torchserve/readme_torchserve_depricated.md. With higher latency and lower throughput.

this repo is adapted from https://github.com/deepcam-cn/yolov5-face (Warning: GNU LICENSE)

  1. Add Torchserve as Inference server
  2. Accerlerated with TensorRT by torch2trt toolkit, with 10x lower latency and 2x larger throughput. This is the first demo to show how serve TensorRT model on Torchserve as far as I know.
  3. Add Docker and logging.

Where Torchserve is a performant, flexible and easy to use tool for serving PyTorch eager mode and torschripted models https://github.com/pytorch/serve.

TensorRT is a library developed by NVIDIA for faster inference on NVIDIA graphics processing units (GPUs). ... It can give around 4 to 5 times faster inference on many real-time services and embedded applications. https://github.com/NVIDIA/TensorRT

"torch2trt" is a PyTorch to TensorRT converter which utilizes the TensorRT Python API. It remain the input/ouput of the model as Torch Tensor format. https://github.com/NVIDIA-AI-IOT/torch2trt

Use TensorRT with Torchserve together in few lines of code

torchserve can serve torch2trt model pretty well, simply by rewriting the handler like this.

from torch2trt import TRTModule

class Yolov5FaceHandler(BaseHandler):
    def initialize(self, context):
        serialized_file = context.manifest["model"]["serializedFile"]
        if serialized_file.split(".")[-1] == "torch2trt": #if serializedFile ends with .torch2trt instead of .pt
            self._load_torchscript_model = self._load_torch2trt_model # overwrite load model function
        self.super().initializer(context)

    def _load_torch2trt_model(self, torch2trt_path):
        logger.info("Loading torch2trt model")
        model_trt = TRTModule()
        model_trt.load_state_dict(torch.load(torch2trt_path))
        return model_trt

see pytorch/serve#1243 for discussion

why choose yolov5face as face detection model

  1. currently (20210904) a SOTA face-detection model on widerface benchmark, balanced between speed and accuracy.
  2. based on pytorch,easy to finetuning,easy to build inference server via torchserve.

model local test and visualization

python torchserve/qpstest.py --mode 1 --vis 1 --image data/images/test.jpg

Torhcserve pipeline

1、decode the image from jpg,resize and padding to lower resolution as 320×320 for acceleration。 2、batch inference with TensorRT backend 3、revert face coords to the size of original resolution and return result with json format

Interface protocal

input:jpg data stream, output:json format, (bounding box, confidence, 5 landmarks)

[
    {
        "xywh_ratio": [0.7689772367477417, 0.25734335581461587, 0.11677041053771975, 0.26296865675184466], 
        "conf": 0.8641895651817322, 
        "landmarks_ratio": [0.754405927658081, 0.22680193583170574, 0.8030961990356446, 0.23478228251139324, 0.7799828529357911, 0.2754765404595269, 0.7510656356811524, 0.31618389553493925, 0.7911150932312012, 0.32295591566297743]
    }, 
    {
    	"xywh_ratio": [0.4645264148712158, 0.47456512451171873, 0.12120456695556636, 0.29619462754991316], 
        "conf": 0.7263935804367065, 
        "landmarks_ratio": [0.4809267997741699, 0.44996253119574653, 0.5082815647125244, 0.4542162577311198, 0.5047649383544922, 0.5095860799153645, 0.4696146011352539, 0.5512683444552952, 0.4905359745025635, 0.5559690687391493]
    }
]

every image consists of N faces,every face include 3 keys:

  • xywh_ratio is face center coordinates and width and height, as ratio of the image size.
  • conf is the confidence of face detection from 0 to 1
  • landmarks_ratio are 5 coords of face landmarks, as ratio of the image size

QuickStart with Docker

Follow below instructions to deploy yolov5face

  1. cd yolov5face/docker
  2. docker-compose up -d

Configurations The yolov5face configurations are actually configures to torchserve. The configuration file locates at: yolov5face/config/config.properties

The configuration items are the ip addresses and port that the service is binded to.

The worker number of torchserve is currently hard fixed to 4.

Bottlenecks: Each yolov5face torchserve consumes 2.5G memory in average, so memory of the system is a bottleneck.

Install Manually without Docker

install dependencies

pip install -r requirements.txt

install java11 dependence. https://www.ubuntu18.com/ubuntu-install-openjdk-11/
On cloud server, if cuda version is different from cuda10.2, manually edit the pytorch version in requirements.txt https://pytorch.org/get-started/locally/

Download model file

download 50M file yolov5s https://drive.google.com/file/d/1zxaHeLDyID9YU4-hqK7KNepXIwbTkRIO/view?usp=sharing
unzip to folder

weights/yolov5s-face.pt

install TensorRT without docker

download TensorRT-7 (compatible with torch2trt tool on 2021, maybe TensorRT-8 is also compatible for now) https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html recommend to install via tar.gz, which is compatible with conda environment https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-tar be aware to write correct ubuntu version,cuda version,and cudnn version

install torch2trt

cd ~/
git clone https://github.com/NVIDIA-AI-IOT/torch2trt
cd torch2trt
python setup.py install

Start Server and Register Model

  1. pack models and python code to torchserve .mar format. Backends with TensorRT.
python ./torchserve/model_repack.py --trt 1

will generate a file "./torchserve/model_store/trt_fd1.mar".

  • start server
torchserve --start --ncs --model-store ./torchserve/model_store/
  • localhost register model
curl -X POST "127.0.0.1:8081/models?url=trt_fd1.mar&batch_size=1&max_batch_delay=2&initial_workers=4&model_name=fd1"

Note that

  1. url=trt_fd1.mar
  2. batch_size=1
  3. initial_workers=2 where 2 is the number of cpu cores on your server, and require 3 * 2 GB system memory.

docker install and run

git clone torch2trt

git clone https://github.com/NVIDIA-AI-IOT/torch2trt --branch v0.3.0

pull nvidia tensorrt7 docker image, (包含ubuntu20.04, cuda, cudnn, tensorrt7.2.2), 时间较长

docker pull nvcr.io/nvidia/tensorrt:20.12-py3

install nvidia-container-runtime

why this step? docker build need GPU and torch2trt to convert the model,see https://stackoverflow.com/questions/59691207/docker-build-with-nvidia-runtime

  1. Install nvidia-container-runtime:
sudo apt-get install nvidia-container-runtime
  1. Edit/create the /etc/docker/daemon.json with content:
{
    "runtimes": {
        "nvidia": {
            "path": "/usr/bin/nvidia-container-runtime",
            "runtimeArgs": []
         } 
    },
    "default-runtime": "nvidia" 
}
  1. Restart docker daemon:
sudo systemctl restart docker

build environment docker image

docker build -f Dockerfile_base --tag base --progress=plain .

build final docker image

docker build -f Dockerfile_torchserve_tensorrt --tag ts_trt --progress=plain .

run

docker run --gpus all -it --rm --name test -p 8080:8080 -p 8081:8081 -p 8082:8082 -p 7070:7070 -p 7071:7071 ts_trt

It will run torchserve/run.sh inside the image. 1、start torchserve 2、register the model success log:
{"status": "Model "fd1" Version: 1.0 registered with 4 initial workers"}

TEST

QPS test

python torchserve/qpstest.py --mode 3

visualization

python torchserve/qpstest.py --mode 3 --vis 1

API example

python torchserve/api.py or
curl 127.0.0.1:8080/predictions/fd1 -T ./data/images/zidane.jpg

QPS test on torchserve

bash ./torchserve/run.sh
python torchserve/qpstest.py --mode 3

QPS test on local torchscript model

python ./torchserve/model_repack.py --trt 0
python torchserve/qpstest.py --mode 1

QPS test on local tensorrt model

python ./torchserve/model_repack.py --trt 1
python torchserve/qpstest.py --mode 2