1. TensorFlow源码

2. 基于TensorFlow的框架

3. 项目/模型

4. 与 TensorFlow 有关的库

  • Scikit Flow (TF Learn) — 深度/机器学习的简化接口(现在是 TensorFlow 的一部分)
  • tensorflow.rb — 使用 SWIG 用于 Ruby 的 TensorFlow 本地接口
  • tflearn — 深度学习库,具有更高级别的 API
  • TensorFlow-Slim — 在 TensorFlow 中定义、训练和评估模型的轻量级库
  • TensorFrames — Apache Spark 的 TensorFlow 绑定,Apache Spark 上 DataFrames 的 Tensorflow 包裹器
  • caffe-tensorflow — 将 Caffe 模型转换为 TensorFlow 格式
  • keras — 用于 TensorFlow 和 Theano 的最小、模块化深度学习库
  • SyntaxNet: Neural Models of Syntax — TensorFlow 实现全球标准化中基于过渡的神经网络描述的模型

5. 教学视频

6. 论文/文献

7. 官方公告

8. 博客文章

9. 社区

10. 书籍

  • 与 TensorFlow 的初次接触 — 作者:Jordi Torres,UPC Barcelona Tech 教授,巴塞罗那超级计算中心研究经理和高级顾问
  • 使用 Python 进行深度学习 — 使用 Keras 在 Theano 和 TensorFlow 上开发深度学习模型(By Jason Brownlee)
  • 用于机器智能的 TensorFlow — 一份完整指南 — 使用 TensorFlow 从图形计算的基础到深度学习模型,并在生产环境中使用它(Bleeding Edge 出版)
  • TensorFlow 入门 — 使用 Google 的最新数值计算库开始运行,并深入了解您的数据(By Giancarlo Zaccone)
  • 使用 Scikit-Learn 和 TensorFlow 的实践机器学习 — 涵盖 ML 基本原理,使用 TensorFlow,最新的 CNN,RNN 和 Autoencoder 架构在多个服务器和 GPU 上训练和部署深度网络,以及强化学习(Deep Q)
  • 使用 TensorFlow 构建机器学习项目 — 本书涵盖了 TensorFlow 中的各种项目,揭示了 TensorFlow 在不同情况下可以做什么。还提供了关于训练模型,机器学习,深度学习和各种使用神经网络的项目。每个项目都是一个有吸引力和有见地的练习,将教你如何使用 TensorFlow,并告诉您如何通过使用 Tensors 来探索数据层。