Data Downloading and Processing Pipeline for OVEN
- Community Contributed Repository
- [Project Page][Paper] [Official Dataset Page][Sibling Project (Infoseek)]
OVEN models recognize the Visual Entity on the Wikipedia, from images in the wild
Open-domain Visual Entity Recognition: Towards Recognizing Millions of Wikipedia Entities (ICCV 2023 Oral)
Hexiang Hu, Yi Luan, Yang Chen, Urvashi Khandelwal, Mandar Joshi, Kenton Lee, Kristina Toutanova, Ming-Wei Chang.
- [6/7] Releasing the annotation for the OVEN Dataset.
- [6/10] Implementing the data downloading script that can reproduce the data from original images.
To download annotations and an image snapshot, please fill in this form and the link will be automatically shared with the registered email.
-
Note: "oven_images" folder contains all images for OVEN and InfoSeek. "infoseek_images" folder is a subset of "oven_images".
-
To download annotation jsonl files, please run download bash script in folder "oven".
-
To download Wikipedia 6M knowledge base (title only or image url), please run bash script download_wiki.sh. Download 6M wiki infobox images from 'all_wikipedia_images.tar'.
To download all images from the source dataset, please go to "image_downloads/" and run all download scripts. Then run the following script to merge all data with ovenid2impath.csv:
python merge_oven_images.py
python run_oven_eval.py
# ===== BLIP2 Zeroshot ====
# ===== Validation ========
# ===== Final score 7.87
# ===== Query Split score 20.58
# ===== Entity Split score 4.87
# ===== Query Seen Accuracy 24.63
# ===== Query Unseen Accuracy 17.68
# ===== Entity Seen Accuracy 8.55
# ===== Entity Unseen Accuracy 3.4
- Run BLIP2 zero-shot inference:
python run_blip2_oven.py --split val_entity
- Next, we need to run BM25 to map the BLIP2 predictions to Wikipedia 6M label space:
python run_bm25_query.py --input_file {INPUT} --output_file {OUTPUT}
- Before running BM25, you need to run BM25 index of Wikipedia (Download Wikipedia from the "Wiki6M_ver_1_0_title_only.jsonl")
python run_bm25_index.py
If you find OVEN useful for your research and applications, please cite using this BibTeX:
@article{hu2023open,
title={Open-domain Visual Entity Recognition: Towards Recognizing Millions of Wikipedia Entities},
author={Hu, Hexiang and Luan, Yi and Chen, Yang and Khandelwal, Urvashi and Joshi, Mandar and Lee, Kenton and Toutanova, Kristina and Chang, Ming-Wei},
journal={arXiv preprint arXiv:2302.11154},
year={2023}
}