This page's style is based on Awesome-Efficient-LLM. Thank you for providing a great format.
A curated list for Reparameterize:
[ ] Sorting papers by year, conference
[ ] Upload an image of the main idea of the paper
[] Support journal format (TPAMI, TNNLS, TIP, etc)
If you'd like to include other reparameterization paper, or need to update any details such as conference information or code URLs, please feel free to submit a pull request. You can generate the required markdown format for each paper by filling in the information in generate_item.py
and execute python generate_item.py
. (or using genetarte_markdown.ipynb
) We warmly appreciate your contributions to this list. Alternatively, you can email me with the links to your paper and code, and I would add your paper to the list at my earliest convenience.
Title & Authors | Introduction | Links |
---|---|---|
Repq-vit: Scale reparameterization for post-training quantization of vision transformers Zhikai. Li, Junrui. Xiao, Lianwei. Yang, Qingyi. Gu, |
Github Paper |
|
FastViT: A Fast Hybrid Vision Transformer Using Structural Reparameterization Pavan. Vasu, James. Gabriel, Jeff. Zhu, Oncel. Tuzel, Anurag. Ranjan, |
Github Paper |
|
Repvit: Revisiting mobile cnn from vit perspective Ao. Wang, Hui. Chen, Zijia. Lin, Hengjun. Pu, Guiguang. Ding, |
Github Paper |
|
FMViT: A multiple-frequency mixing Vision Transformer Wei. Tan, Yifeng. Geng, Xuansong. Xie, |
Github Paper |
Title & Authors | Introduction | Links |
---|---|---|
Make RepVGG Greater Again: A Quantization-aware Approach Xiangxiang. Chu, Liang. Li, Bo. Zhang, |
Paper | |
RepQ: Generalizing Quantization-Aware Training for Re-Parametrized Architectures Anastasiia. Prutianova, Alexey. Zaytsev, Chung-Kuei. Lee, Fengyu. Sun, Ivan. Koryakovskiy, |
Paper | |
Post-Training Quantization for Re-parameterization via Coarse & Fine Weight Splitting Dawei. Yang, Ning. He, Xing. Hu, Zhihang. Yuan, Jiangyong. Yu, Chen. Xu, Zhe. Jiang, |
Github Paper |
Title & Authors | Introduction | Links |
---|---|---|
RepMode: Learning to Re-parameterize Diverse Experts for Subcellular Structure Prediction Donghao. Zhou, Chunbin. Gu, Junde. Xu, Furui. Liu, Qiong. Wang, Guangyong. Chen, Pheng-Ann. Heng, |
Github Paper |
|
RepViT-SAM: Towards Real-Time Segmenting Anything Ao. Wang, Hui. Chen, Zijia. Lin, Jungong. Han, Guiguang. Ding, |
Github Paper |
|
6d rotation representation for unconstrained head pose estimation Thorsten. Hempel, Ahmed. Abdelrahman, Ayoub. Al-Hamadi, |
Github Paper |
|
YOLOv6: A single-stage object detection framework for industrial applications Chuyi. Li, Lulu. Li, Hongliang. Jiang, Kaiheng. Weng, Yifei. Geng, Liang. Li, Zaidan. Ke, Qingyuan. Li, Meng. Cheng, Weiqiang. Nie, others, |
Github Paper |
|
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors Chien-Yao. Wang, Alexey. Bochkovskiy, Hong-Yuan. Liao, |
Github Paper |
|
Ultralytics YOLO (YOLO v8) Glenn. Jocher, Ayush. Chaurasia, Jing. Qiu, |
Github Docs |
Title & Authors | Introduction | Links |
---|---|---|
Re-parameterizing your optimizers rather than architectures X. Ding, H. Chen, X. Zhang, K. Huang, J. Han, G. Ding, |
Github Paper |
|
Repmlpnet: Hierarchical vision mlp with re-parameterized locality Xiaohan. Ding, Honghao. Chen, Xiangyu. Zhang, Jungong. Han, Guiguang. Ding, |
Github Paper |
|
Spatial Re-parameterization for N: M Sparsity Yuxin. Zhang, Mingbao. Lin, Yunshan. Zhong, Mengzhao. Chen, Fei. Chao, Rongrong. Ji, |
Github Paper |
|
Reparameterization through Spatial Gradient Scaling Alexander. Detkov, Mohammad. Salameh, Muhammad. Fetrat, Jialin. Zhang, Robin. Luwei, SHANGLING. JUI, Di. Niu, |
Github Paper |
|
Online convolutional re-parameterization Mu. Hu, Junyi. Feng, Jiashen. Hua, Baisheng. Lai, Jianqiang. Huang, Xiaojin. Gong, Xian-Sheng. Hua, |
Github Paper |
|
Resrep: Lossless cnn pruning via decoupling remembering and forgetting Xiaohan. Ding, Tianxiang. Hao, Jianchao. Tan, Ji. Liu, Jungong. Han, Yuchen. Guo, Guiguang. Ding, |
Github Paper |