2023 Efficient AI Study

날로 거대해지는 AI 모델로 인한 비용 상승을 막기 위한 모든 기술에 대해 공부를 하는 스터디입니다.

운영

규칙

  • 2021년 이후의 최신 논문을 다루는 것을 원칙으로 합니다. 이왕이면 최신 연구내용/기술을 공부한다는 마음으로 도전하시는 것을 권합니다.
  • 워낙 다루는 기술의 폭이 넓다보니 백그라운드 없이 논문을 이해하기 힘들 수 있습니다. 기술의 의미를 설명하는 것에 20%-50% 이상 할애할 필요가 있습니다.
  • 발표가 끝나면 설문을 통해 피드백과 질문을 수집합니다. 발표자는 질문에 대한 대답을 Discussions를 통해 이어나가야하며, 설문 제출은 출석으로 간주됩니다.
  • 4회 이상 출석 체크가 없으신 멤버는 스터디 활동을 원하지 않으시는 것으로 간주하여 강퇴될 수 있습니다.
  • 줌 링크와 발표 자료 링크 등은 Slack 공지방을 통해 공개됩니다.
  • 발표는 녹화하여 내부적으로 1주일간 공유합니다.
  • 발표 자료의 공개는 각 발표자의 의사에 따릅니다. (발표자료 공개를 원치 않는 경우, 최소한 요약 리뷰글을 공개해주셔야합니다.)

일정

2023년 5월 10일부터 2023년 7월 26일까지 12주간 진행합니다. 주제가 결정된 발표자는 Issue를 생성하고 아래 표에 Issue 번호와 함께 발표 주제를 적어 넣습니다. 추가 디스커션은 Issue를 통해 이뤄지도록 합니다.

When Who What Links Issue # Etc.
5/3 김태수 Introduction to Efficient AI Study - #1 -
5/10 권세중 Challenges on Optimization of LLM Inference - #2 -
5/17 김형준 How to Improve Sampling Speed of Diffusion Models - #3 -
5/24 TBD - - - -
5/31 박상수 DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation https://arxiv.org/pdf/2209.10797.pdf #5 -
6/7 TBD - - - -
6/14 강병하 - - #7 -
6/21 김도형 NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization for Vision Transformers (CVPR-2023) https://arxiv.org/abs/2211.16056 #8 -
6/28 TBD - - - -
7/5 박다훈 Reparameterized Technique https://arxiv.org/abs/2101.03697 , https://arxiv.org/pdf/2212.01593.pdf #10 -
7/12 TBD - - - -
7/19 TBD - - - -
7/26 TBD - - - -

논문 후보 (Neurips 2022 & ICLR 2023) - 추가 예정

아직 공개가 되지 않은 논문도 많긴하지만, 차차 공개될 것으로 예상합니다.

Title Link Keyword
FP8 Quantization: The Power of the Exponent https://arxiv.org/abs/2208.09225 Quantization
ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers https://arxiv.org/abs/2206.01861 Quantization
Extreme Compression for Pre-trained Transformers Made Simple and Efficient https://arxiv.org/abs/2206.01859 Quantization
Towards Efficient Post-training Quantization of Pre-trained Language Models https://arxiv.org/abs/2206.01859 Quantization
Leveraging Inter-Layer Dependency for Post-Training Quantization https://nips.cc/Conferences/2022/Schedule?showEvent=54389 Quantization
Entropy-Driven Mixed-Precision Quantization for Deep Network Design on IoT Devices https://neurips.cc/Conferences/2022/ScheduleMultitrack?event=54104 Quantization
Redistribution of Weights and Activations for AdderNet Quantization https://nips.cc/Conferences/2022/Schedule?showEvent=54812 Quantization
Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning https://arxiv.org/abs/2208.11580 Quantization
ClimbQ: Class Imbalanced Quantization Enabling Robustness on Efficient Inferences https://nips.cc/Conferences/2022/Schedule?showEvent=55162 Quantization
Q-ViT: Accurate and Fully Quantized Low-bit Vision Transformer https://arxiv.org/abs/2210.06707 Quantization
Structural Pruning via Latency-Saliency Knapsack https://nips.cc/Conferences/2022/Schedule?showEvent=52841 Pruning
Advancing Model Pruning via Bi-level Optimization https://neurips.cc/Conferences/2022/ScheduleMultitrack?event=55360 Pruning
Pruning has a disparate impact on model accuracy https://arxiv.org/abs/2205.13574 Pruning
Data-Efficient Structured Pruning via Submodular Optimization https://arxiv.org/abs/2203.04940 Pruning
SAViT: Structure-Aware Vision Transformer Pruning via Collaborative Optimization https://nips.cc/Conferences/2022/Schedule?showEvent=55067 Pruning
Recall Distortion in Neural Network Pruning and the Undecayed Pruning Algorithm https://arxiv.org/abs/2206.02976 Pruning
Pruning Neural Networks via Coresets and Convex Geometry: Towards No Assumptions https://arxiv.org/abs/2209.08554 Pruning
Robust Binary Models by Pruning Randomly-initialized Networks https://arxiv.org/abs/2202.01341 Pruning
On Neural Network Pruning's Effect on Generalization https://nips.cc/Conferences/2022/Schedule?showEvent=54812 Pruning
A Fast Post-Training Pruning Framework for Transformers https://arxiv.org/abs/2204.09656 Pruning
VTC-LFC: Vision Transformer Compression with Low-Frequency Components https://neurips.cc/Conferences/2022/ScheduleMultitrack?event=54752 Compression
Lossless Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach https://nips.cc/Conferences/2022/Schedule?showEvent=55429; https://arxiv.org/abs/2001.00218 Compression
Fine-tuning Language Models over Slow Networks using Activation Compression with Guarantees https://arxiv.org/abs/2206.01299 Compression
Deep Compression of Pre-trained Transformer Models https://nips.cc/Conferences/2022/Schedule?showEvent=53013 Compression
GPTQ: Accurate Quantization for Generative Pre-trained Transformers https://openreview.net/forum?id=tcbBPnfwxS Quantization