/wordvector_be

Web服务:使用腾讯 800 万词向量模型和 spotify annoy 引擎得到相似关键词

Primary LanguageGo

wordvector_be

这个项目用 go 语言实现了一个 HTTP 服务,使用腾讯 800 万词的 word vector 模型 得到相似关键词和关键词的cosine similarity。索引使用了 spotify 的 annoy 引擎。

安装

一、首先安装 annoy 的 golang 包,参照 这个文档,不需要执行所有步骤,只要执行下面命令

swig -go -intgosize 64 -cgo -c++ src/annoygomodule.i
mkdir -p $GOPATH/src/annoyindex
cp src/annoygomodule_wrap.cxx src/annoyindex.go \
  src/annoygomodule.h src/annoylib.h src/kissrandom.h test/annoy_test.go $GOPATH/src/annoyindex

二、然后下载腾讯的模型文件,建议使用 aria2c

go get github.com/huichen/wordvector_be
cd $GOPATH/src/github.com/huichen/wordvector_be
mkdir data
cd data/
aria2c -c https://ai.tencent.com/ailab/nlp/data/Tencent_AILab_ChineseEmbedding.tar.gz
tar zxvf https://ai.tencent.com/ailab/nlp/data/Tencent_AILab_ChineseEmbedding.tar.gz

三、将腾讯的 txt 模型文件导出为 leveldb 格式的数据库,进入 gen_wordvector_leveldb 后执行

go run main.go

生成的数据库在 data/tencent_embedding_wordvector.db 目录下

四、创建 annoy 索引文件和 metadata 数据库,进入 gen_annoy_index 目录,执行

go run main.go

你的电脑要有 10G 左右内存。不到 30 分钟后,索引文件生成在 data/tencent_embedding.ann。annoy 索引的 key 是整数 id,不包括关键词和 id 之间的映射关系,这个关系放在了 data/tencent_embedding_index_to_keyword.db 和 data/tencent_embedding_keyword_to_index.db 两个 leveldb 数据库备用。

使用

所有包和数据文件准备好之后,就可以启动服务了:

go build
./wordvector_be

在浏览器打开 http://localhost:3721/get.similar.keywords/?keyword=美白&num=20 ,返回如下,word 字段是关键词,similarity 是关键词词向量之间的 consine similarity,约接近 1 越相似。

{
  "keywords": [
    {
      "word": "美白",
      "similarity": 1
    },
    {
      "word": "淡斑",
      "similarity": 0.8916605
    },
    {
      "word": "美白产品",
      "similarity": 0.8722978
    },
    {
      "word": "美白效果",
      "similarity": 0.8654123
    },
    {
      "word": "想美白",
      "similarity": 0.86464494
    },
...

更多函数见 main.go 代码中的注释。

参数调优

你可能发现了,这个程序返回的相似词和腾讯官方的例子略有不同,因为我们用的是相似紧邻算法,不保证 100% 的召回率。主要有以下参数可以调整

  • numTrees: gen_annoy_index/main.go,近似最近邻计算需要的随机森林中树的个数,树越多召回率越高,但也意味更久的建树时间(一次性)和请求延迟
  • kSearch: main.go,搜索栈长度,这个值越大则请求耗时越长,但召回率越高

在程序中默认使用 numTrees = 10 和 kSearch = 10000 两个参数,可以得到不错的召回率,压测 100 并发 http 请求的情况下,延迟平均 76 毫秒方差 65 毫秒。如果你有更充足的时间,可以增加 numTrees 延长建树的时间;如果你对服务的并发和延迟有更高要求,可以适当降低 kSearch,不过这样做也会降低召回率。请根据业务需求做适当的权衡。