/psf

Point Spread Function calculations for fluorescence microscopy. Forked from https://pypi.org/project/psf

Primary LanguageCBSD 3-Clause "New" or "Revised" LicenseBSD-3-Clause

Point Spread Function calculations for fluorescence microscopy

Psf is a Python library to calculate Point Spread Functions (PSF) for fluorescence microscopy.

This library is no longer actively developed.

Authors

Christoph Gohlke, Oliver Holub

Organization

Laboratory for Fluorescence Dynamics. University of California, Irvine

License

BSD 3-Clause

Version

2021.6.6

Requirements

Revisions

2021.6.6

Remove support for Python 3.6 (NEP 29).

2020.1.1

Remove support for Python 2.7 and 3.5. Update copyright.

2019.10.14

Support Python 3.8.

2019.4.22

Fix setup requirements. Fix compiler warning.

References

  1. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. B Richards and E Wolf. Proc R Soc Lond A, 253 (1274), 358-379, 1959.
  2. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. S T Hess, W W Webb. Biophys J (83) 2300-17, 2002.
  3. Electromagnetic description of image formation in confocal fluorescence microscopy. T D Viser, S H Wiersma. J Opt Soc Am A (11) 599-608, 1994.
  4. Photon counting histogram: one-photon excitation. B Huang, T D Perroud, R N Zare. Chem Phys Chem (5), 1523-31, 2004. Supporting information: Calculation of the observation volume profile.
  5. Gaussian approximations of fluorescence microscope point-spread function models. B Zhang, J Zerubia, J C Olivo-Marin. Appl. Optics (46) 1819-29, 2007.
  6. The SVI-wiki on 3D microscopy, deconvolution, visualization and analysis. https://svi.nl/NyquistRate
  7. Theory of Confocal Microscopy: Resolution and Contrast in Confocal Microscopy. http://www.olympusfluoview.com/theory/resolutionintro.html

Examples

>>> import psf >>> args = dict(shape=(32, 32), dims=(4, 4), ex_wavelen=488, em_wavelen=520, ... num_aperture=1.2, refr_index=1.333, ... pinhole_radius=0.55, pinhole_shape='round') >>> obsvol = psf.PSF(psf.GAUSSIAN | psf.CONFOCAL, args) >>> print(f'{obsvol.sigma.ou[0]:.5f}, {obsvol.sigma.ou[1]:.5f}') 2.58832, 1.37059 >>> obsvol = psf.PSF(psf.ISOTROPIC | psf.CONFOCAL,args) >>> print(obsvol, end='') # doctest:+ELLIPSIS PSF Confocal, Isotropic shape: (32, 32) pixel dimensions: (4.00, 4.00) um, (55.64, 61.80) ou, (8.06, 8.06) au excitation wavelength: 488.0 nm emission wavelength: 520.0 nm numeric aperture: 1.20 refractive index: 1.33 half cone angle: 64.19 deg magnification: 1.00 underfilling: 1.00 pinhole radius: 0.550 um, 8.498 ou, 1.1086 au, 4.40 px computing time: ... ms >>> obsvol[0, :3] array([1. , 0.51071, 0.04397]) >>> # save the image plane to file >>> obsvol.slice(0).tofile('_test_slice.bin') >>> # save a full 3D PSF volume to file >>> obsvol.volume().tofile('_test_volume.bin')

Refer to the psf_example.py file in the source distribution for more examples.