本项目基于yolov5-face模改为yolov5-peroson—pose,主要是为了完成一个端到端的行人关键点检测项目,不会因为单帧图像中多人的情况导致耗时成倍增加。 结合多任务学习的**,引入了AutomaticWeightedLoss,得到了初步效果。由于此算法是硬相关,效果不太理想,后续会修改为软相关,后续优化还在持续中。。。,
本实验基于crowdpose数据展开
- Download crowdpose datasets.
python3 crowdpose.py
得到转化后的数据,本实验只提取了12个关键点
CUDA_VISIBLE_DEVICES="0,1,2,3" python3 train.py
python3 test_pose.py
cd widerface_evaluate
python3 evaluation.py
https://github.com/FeiGeChuanShu/ncnn_Android_face/tree/main/ncnn-android-yolov5_face
https://github.com/hpc203/yolov5-dnn-cpp-python-v2
https://github.com/ultralytics/yolov5
https://github.com/DayBreak-u/yolo-face-with-landmark
https://github.com/xialuxi/yolov5_face_landmark
https://github.com/biubug6/Pytorch_Retinaface
https://github.com/deepinsight/insightface
-
If you think this work is useful for you, please cite
@article{YOLO5Face, title = {YOLO5Face: Why Reinventing a Face Detector}, author = {Delong Qi and Weijun Tan and Qi Yao and Jingfeng Liu}, booktitle = {ArXiv preprint ArXiv:2105.12931}, year = {2021} }