The final project for CS224n
The attempt to replicate below paper.
https://arxiv.org/abs/1705.04304
https://github.com/peter6888/nlp_project
Type the following with your current directory being our repository.
cd data
sh download.sh
unzip finished_files.zip
cd src
sh run_cmd.sh
Train base model from https://github.com/abisee/pointer-generator
pip install pyrouge
Remember to change the name of the experiment and log_root (this is the directory where logs will be saved).
python run_summarization.py --mode=train --data_path=../data/finished_files/chunked/train_*.bin --vocab_path=../data/finished_files/vocab --log_root=/home/stonepeter/log --exp_name=baseline
Remember to change the name of the experiment and log_root (this is the directory where logs will be saved).
python run_summarization.py --mode=eval --data_path=../data/finished_files/chunked/val_* --vocab_path=../data/finished_files/vocab --log_root=/home/stonepeter/log --exp_name=baseline
Remember to change the name of the experiment and log_root (this is the directory where logs will be saved).
python run_summarization.py --mode=decode --data_path=../data/finished_files/chunked/test_* --vocab_path=../data/finished_files/vocab --log_root=/home/stonepeter/log --exp_name=baseline
Use PyTeaser generate the Summary From CNN https://github.com/xiaoxu193/PyTeaser save the summary.
sumy_eval lex-rank ref_summ.txt --url=https://www.huffingtonpost.com/2013/11/22/twitter-forward-secrecy_n_4326599.html
sample output
Precision: 0.000000
Recall: 0.000000
F-score: 0.000000
Cosine similarity: 0.350201
Cosine similarity (document): 0.670010
Unit overlap: 0.128788
Unit overlap (document): 0.294798
Rouge-1: 0.161616
Rouge-2: 0.000000
Rouge-L (Sentence Level): 0.066107
Rouge-L (Summary Level): 0.039251
sumy_eval lex-rank art2_sum.txt --file=/Users/peli/forgit/nlp_project/data/art2.txt --format=plaintext
Precision: 0.000000
Recall: 0.000000
F-score: 0.000000
Cosine similarity: 0.721001
Cosine similarity (document): 0.900767
Unit overlap: 0.216450
Unit overlap (document): 0.344426
Rouge-1: 0.597403
Rouge-2: 0.461538
Rouge-L (Sentence Level): 0.103124
Rouge-L (Summary Level): 0.004133
-
Intra-Temporal Attention Decoder on Input Sequence
-
Intra-Decoder Attention Decoder
-
Token Generation and Pointer
-
Sharing Decoder Weights
Mendeley https://www.mendeley.com/newsfeed/#group:d48f9375-8628-3922-aa04-ac0f8832ae01
Slack https://cs224nprojectteam.slack.com
Overleaf https://www.overleaf.com/read/hykvfpwrgvsj
Which is a perl based tool, and use pyrouge to call https://github.com/andersjo/pyrouge
git clone https://github.com/andersjo/pyrouge.git
edit ~/.pyrouge/settings.ini
[pyrouge settings]
home_dir = /home/cs224n-team/notebooks/pyrouge/tools/ROUGE-1.5.5
Maybe want to re-build the .db for some reason
cd /home/cs224n-team/notebooks/pyrouge/tools/ROUGE-1.5.5/data/WordNet-2.0-Exceptions/
perl buildExeptionDB.pl /home/cs224n-team/notebooks/pyrouge/tools/ROUGE-1.5.5/data/WordNet-2.0-Exceptions db /home/cs224n-team/notebooks/pyrouge/tools/ROUGE-1.5.5/data/WordNet-2.0.exc.db