Tutorial on machine learning methods for microbiome amplicon data analysis. Used for workshop in BOT 662 Spring 2023.
Included:
- Jupyter notebook tutorials:
- Part 1: Exploratory data analysis (EDA) with PCA and UMAP.
- Part 2: Machine learning (ML) with logistic regression, decision trees, and random forests in scikit-learn.
- Part 3: Latent Dirichlet Allocation (LDA)
- Data files used by tutorials.
- Lyons dataset (32 samples)
- brom_meta.csv contains sample meta data.
- OTUs.100.rep.count_table.csv contains raw sample count data.
- Taxonomy
- Waimea dataset (1410 samples)
- OTU table
- Sample data
- Taxonomy
- Lyons dataset (32 samples)
- Guide to writing a machine learning methods sections.