EN | 简体中文
It is Angle 📐, not Angel 👼.
🔥 A New SOTA for Semantic Textual Similarity!
🔥 Our universal sentence embedding WhereIsAI/UAE-Large-V1 achieves SOTA on the MTEB Leaderboard with an average score of 64.64!
🤗 HF | LoRA Weight | Dependent Backbone | LLM | Language | Prompt | Pooling Strategy | Examples |
---|---|---|---|---|---|---|---|
WhereIsAI/UAE-Large-V1 | N | N | N | EN | Prompts.C for retrieval purposes, None for others |
cls | |
SeanLee97/angle-llama-13b-nli | Y | NousResearch/Llama-2-13b-hf | Y | EN | Prompts.A |
last token | / |
SeanLee97/angle-llama-7b-nli-v2 | Y | NousResearch/Llama-2-7b-hf | Y | EN | Prompts.A |
last token | / |
SeanLee97/angle-llama-7b-nli-20231027 | Y | NousResearch/Llama-2-7b-hf | Y | EN | Prompts.A |
last token | / |
SeanLee97/angle-bert-base-uncased-nli-en-v1 | N | N | N | EN | N | cls_avg |
/ |
SeanLee97/angle-roberta-wwm-base-zhnli-v1 | N | N | N | ZH-CN | N | cls |
/ |
SeanLee97/angle-llama-7b-zhnli-v1 | Y | NousResearch/Llama-2-7b-hf | Y | ZH-CN | Prompts.B |
last token | / |
💡 If the selected model is a LoRA weight, it must specify the corresponding dependent backbone.
For our STS Experiment, please refer to https://github.com/SeanLee97/AnglE/tree/main/examples/NLI
Model | STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness | Avg. |
---|---|---|---|---|---|---|---|---|
SeanLee97/angle-llama-7b-nli-20231027 | 78.68 | 90.58 | 85.49 | 89.56 | 86.91 | 88.92 | 81.18 | 85.90 |
SeanLee97/angle-llama-7b-nli-v2 | 79.00 | 90.56 | 85.79 | 89.43 | 87.00 | 88.97 | 80.94 | 85.96 |
SeanLee97/angle-llama-13b-nli | 79.33 | 90.65 | 86.89 | 90.45 | 87.32 | 89.69 | 81.32 | 86.52 |
SeanLee97/angle-bert-base-uncased-nli-en-v1 | 75.09 | 85.56 | 80.66 | 86.44 | 82.47 | 85.16 | 81.23 | 82.37 |
Model | ATEC | BQ | LCQMC | PAWSX | STS-B | SOHU-dd | SOHU-dc | Avg. |
---|---|---|---|---|---|---|---|---|
^shibing624/text2vec-bge-large-chinese | 38.41 | 61.34 | 71.72 | 35.15 | 76.44 | 71.81 | 63.15 | 59.72 |
^shibing624/text2vec-base-chinese-paraphrase | 44.89 | 63.58 | 74.24 | 40.90 | 78.93 | 76.70 | 63.30 | 63.08 |
SeanLee97/angle-roberta-wwm-base-zhnli-v1 | 49.49 | 72.47 | 78.33 | 59.13 | 77.14 | 72.36 | 60.53 | 67.06 |
SeanLee97/angle-llama-7b-zhnli-v1 | 50.44 | 71.95 | 78.90 | 56.57 | 81.11 | 68.11 | 52.02 | 65.59 |
^ denotes baselines, their results are retrieved from: https://github.com/shibing624/text2vec
AnglE supports two APIs, one is the transformers
API, the other is the AnglE
API. If you want to use the AnglE
API, please install AnglE first:
python -m pip install -U angle-emb
- For Retrieval Purposes
For retrieval purposes, please use the prompt Prompts.C
.
from angle_emb import AnglE, Prompts
angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
angle.set_prompt(prompt=Prompts.C)
vec = angle.encode({'text': 'hello world'}, to_numpy=True)
print(vec)
vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True)
print(vecs)
- For non-Retrieval Purposes
from angle_emb import AnglE
angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
vec = angle.encode('hello world', to_numpy=True)
print(vec)
vecs = angle.encode(['hello world1', 'hello world2'], to_numpy=True)
print(vecs)
Difference between retrieval and non-retrieval sentence embeddings. [click to expand]
In UAE, we use different approaches for retrieval and non-retrieval tasks, each serving a different purpose.
Retrieval tasks aim to find relevant documents, and as a result, the related documents may not have strict semantic similarities to each other.
For instance, when querying "How about ChatGPT?", the related documents are those that contain information related to "ChatGPT," such as "ChatGPT is amazing..." or "ChatGPT is bad....".
Conversely, non-retrieval tasks, such as semantic textual similarity, require sentences that are semantically similar.
For example, a sentence semantically similar to "How about ChatGPT?" could be "What is your opinion about ChatGPT?".
To distinguish between these two types of tasks, we use different prompts.
For retrieval tasks, we use the prompt "Represent this sentence for searching relevant passages: {text}" (Prompts.C in angle_emb).
For non-retrieval tasks, we set the prompt to empty, i.e., just input your text without specifying a prompt.
So, if your scenario is retrieval-related, it is highly recommended to set the prompt with angle.set_prompt(prompt=Prompts.C). If not, leave the prompt empty or use angle.set_prompt(prompt=None).
- AnglE
from angle_emb import AnglE, Prompts
angle = AnglE.from_pretrained('NousResearch/Llama-2-7b-hf', pretrained_lora_path='SeanLee97/angle-llama-7b-nli-v2')
print('All predefined prompts:', Prompts.list_prompts())
angle.set_prompt(prompt=Prompts.A)
print('prompt:', angle.prompt)
vec = angle.encode({'text': 'hello world'}, to_numpy=True)
print(vec)
vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True)
print(vecs)
- transformers
from angle_emb import AnglE
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig
peft_model_id = 'SeanLee97/angle-llama-7b-nli-v2'
config = PeftConfig.from_pretrained(peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path).bfloat16().cuda()
model = PeftModel.from_pretrained(model, peft_model_id).cuda()
def decorate_text(text: str):
return Prompts.A.format(text=text)
inputs = 'hello world!'
tok = tokenizer([decorate_text(inputs)], return_tensors='pt')
for k, v in tok.items():
tok[k] = v.cuda()
vec = model(output_hidden_states=True, **tok).hidden_states[-1][:, -1].float().detach().cpu().numpy()
print(vec)
- AnglE
from angle_emb import AnglE
angle = AnglE.from_pretrained('SeanLee97/angle-bert-base-uncased-nli-en-v1', pooling_strategy='cls_avg').cuda()
vec = angle.encode('hello world', to_numpy=True)
print(vec)
vecs = angle.encode(['hello world1', 'hello world2'], to_numpy=True)
print(vecs)
- transformers
import torch
from transformers import AutoModel, AutoTokenizer
model_id = 'SeanLee97/angle-bert-base-uncased-nli-en-v1'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModel.from_pretrained(model_id).cuda()
inputs = 'hello world!'
tok = tokenizer([inputs], return_tensors='pt')
for k, v in tok.items():
tok[k] = v.cuda()
hidden_state = model(**tok).last_hidden_state
vec = (hidden_state[:, 0] + torch.mean(hidden_state, dim=1)) / 2.0
print(vec)
We support two dataset formats:
-
DatasetFormats.A
: it is a pair format with three columns:text1
,text2
, andlabel
(0/1). -
DatasetFormats.B
: it is a triple format with three columns:text
,positive
, andnegative
.positive
andnegative
store the positive and negative samples oftext
.
You need to prepare your data into huggingface datasets.Dataset
in one of the formats in terms of your supervised data.
Use angle-trainer
to train your AnglE model in cli mode. Usage: CUDA_VISIBLE_DEVICES=0 angle-trainer --help
from datasets import load_dataset
from angle_emb import AnglE, AngleDataTokenizer
# 1. load pretrained model
angle = AnglE.from_pretrained('SeanLee97/angle-bert-base-uncased-nli-en-v1', max_length=128, pooling_strategy='cls').cuda()
# 2. load dataset
# `text1`, `text2`, and `label` are three required columns.
ds = load_dataset('mteb/stsbenchmark-sts')
ds = ds.map(lambda obj: {"text1": str(obj["sentence1"]), "text2": str(obj['sentence2']), "label": obj['score']})
ds = ds.select_columns(["text1", "text2", "label"])
# 3. transform data
train_ds = ds['train'].shuffle().map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
valid_ds = ds['validation'].map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
test_ds = ds['test'].map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
# 4. fit
angle.fit(
train_ds=train_ds,
valid_ds=valid_ds,
output_dir='ckpts/sts-b',
batch_size=32,
epochs=5,
learning_rate=2e-5,
save_steps=100,
eval_steps=1000,
warmup_steps=0,
gradient_accumulation_steps=1,
loss_kwargs={
'w1': 1.0,
'w2': 1.0,
'w3': 1.0,
'cosine_tau': 20,
'ibn_tau': 20,
'angle_tau': 1.0
},
fp16=True,
logging_steps=100
)
# 5. evaluate
corrcoef, accuracy = angle.evaluate(test_ds, device=angle.device)
print('corrcoef:', corrcoef)
You are welcome to use our code and pre-trained models. If you use our code and pre-trained models, please support us by citing our work as follows:
@article{li2023angle,
title={AnglE-optimized Text Embeddings},
author={Li, Xianming and Li, Jing},
journal={arXiv preprint arXiv:2309.12871},
year={2023}
}
📅 | Description |
---|---|
2024 Jan 11 | refactor to support angle-trainer and BeLLM |
2023 Dec 4 | Release a universal English sentence embedding model: WhereIsAI/UAE-Large-V1 |
2023 Nov 2 | Release an English pretrained model: SeanLee97/angle-llama-13b-nli |
2023 Oct 28 | Release two chinese pretrained models: SeanLee97/angle-roberta-wwm-base-zhnli-v1 and SeanLee97/angle-llama-7b-zhnli-v1 ; Add chinese README.md |