/Jupyter-Notebook-Template

Jupyter Notebook Templates for quick prototyping of machine learning solutions

Primary LanguageJupyter NotebookMIT LicenseMIT

📔 Jupyter-Notebook-Template

Notebook Templates for quick prototyping of Machine Learning solutions.

What's in the project?

STEP 1️⃣: Data Exploration

STEP 2️⃣: Feature Engineering

  • Outlier Treatment
  • Missing Values Imputation
  • Encoding Categorical Attribute
  • Scaling
  • Handling Class Imbalance
  • Dimensionality Reduction

STEP 3️⃣: Feature Selection

STEP 4️⃣: Modelling

  • Classification using Pycaret
  • Regression using Pycaret
  • Clustering using Pycaret
  • Anomaly Detection using Pycaret
  • Time Series Modelling
  • Recommendation System
  • Optimization Problems

STEP 5️⃣: Hyperparameter Optimization

STEP 6️⃣: Model Explanability using SHAP

TASKS

TO-DO

COMPLETED

  • EDA Using LUX
  • Feature Engineering using Scikit-Learn and ImbLearn
  • Classification Template using Pycaret
  • Regression Template using Pycaret
  • Clustering using Pycaret
  • Anomaly Detection using Pycaret
  • Hyperparameter Optmization using Scikit-Learn & Scikit-Optimize
  • Feature Selection - Refer here for details.

Resources are mentioned in more details in document here.