/wikidb

WikiDB: Build a DB (key-value store - LMDB style) from Wikidata dump

Primary LanguageJupyter NotebookOtherNOASSERTION

WikiDB: Build a DB (key-value store - LMDB style) from Wikidata dump

Build a local WikiDB from Wikidata dumps. We can fast access Wikidata item information, fact provenances, search and filter wikidata (known their attribute value (Wikidata ID)).

Features:

  • Get Wikidata entity information without any limitation as the online Wikidata request
  • Access provenance facts 1.4B facts with 1B references
  • Fast entities boolean search. For example: It takes 5 seconds (0.02 seconds if using wikidb local ID) to get all male[Q6581072] (5,868,897) or 2.2 seconds (0.01 seconds if using wikidb local ID)to get all researchers (occupation[P106]-researcher[Q1650915]) (1,765,233).

See more details in example.ipynb

Use wikidb

  1. Modify config.py to your setting
  • DIR_ROOT to your project director, e,g,. /Users/phucnguyen/git/wikidb
  1. Clone project, create venv and install dependencies
git clone https://github.com/phucty/wikidb.git
cd wikidb
conda create -n wikidb python=3.6
conda activate wikidb
pip install -r requirements.txt
  1. Download and decompress indexed models from the 20220131 Wikidata dump version.
  • Download file: models.tar.bz2 - 39.68GB
  • Decompressed folder: /data/models - 182.21GB

Download models.tar.bz2 and decompress the file to /data/

mkdir data
cd data
tar -xvjf models.tar.bz2 

After decompressing:

wikidb
|--data
|  |--models
|  |  |--wikidb.lmdb 
|  |  |--wikidb.trie
  1. Refer to example.py or example.ipynb
# Import class
from core.db_wd import DBWikidata

# Wikidb
db = DBWikidata()

### 1. Get Entity Information

# Get label of Belgium (Q31)
print(db.get_label("Q31"))

# Gel label in all languages of Belgium (Q31)
print(db.get_labels("Q31"))
# Get label in a specific language
print(db.get_labels("Q31", "ja"))

# Gel aliases in all languages of Belgium (Q31)
print(db.get_aliases("Q31"))
# Get aliases in a specific language of Belgium (Q31)
print(db.get_aliases("Q31", "ja"))

# Gel descriptions in all languages of Belgium (Q31)
print(db.get_descriptions("Q31"))
# Get descriptions in a specific language of Belgium (Q31)
print(db.get_descriptions("Q31", "ja"))

# Gel sitelinks of Belgium (Q31)
print(db.get_sitelinks("Q31"))

# Gel Wikipedia title of Belgium (Q31)
print(db.get_wikipedia_title("ja", "Q31"))
# Gel Wikipedia link of Belgium (Q31)
print(db.get_wikipedia_link("ja", "Q31"))

# Gel claims of Belgium (Q31)
print(db.get_claims("Q31"))

# Get all information of Belgium (Q31)
print(db.get_item("Q31"))

# Get redirect of Belgium (Q31)
redirects = db.get_redirect_of("Q31")
print(redirects)

# Get redirect of
print(db.get_redirect(redirects[0]))

# Get instance of Belgium (Q31)
instance_ofs = db.get_instance_of("Q31")
for i, wd_id in enumerate(instance_ofs):
    print(f"{i}: {wd_id} - {db.get_label(wd_id)}")

# Get subclass of Belgium (Q31)
print(db.get_subclass_of("Q31"))

# Get all types of Belgium (Q31)
types = db.get_all_types("Q31")
for i, wd_id in enumerate(types):
    print(f"{i}: {wd_id} - {db.get_label(wd_id)}")

### 2. Get Provenance nodes

# Print provenance list
def print_provenance_list(iter_obj, top=3):
    for i, provenance in enumerate(iter_obj):
        if i > top:
            break
        subject = provenance["subject"]
        predicate = provenance["predicate"]
        value = provenance["value"]
        reference_node = provenance["reference"]
        print(
            f"{i+1}: <{subject}[{db.get_label(subject)}] - {predicate}[{db.get_label(predicate)}] - {value}>]]"
        )
        print(f"  Reference Node:")
        for ref_type, ref_objs in reference_node.items():
            for ref_prop, ref_v in ref_objs.items():
                print(f"    {ref_prop}[{db.get_label(ref_prop)}]: {ref_v}")
    print()


# Get provenance of Belgium (Q31)
print_provenance_list(db.iter_provenances("Q31"))
# Get provenance of Belgium (Q31), and Tokyo (Q1490)
print_provenance_list(db.iter_provenances(["Q31", "Q1490"]))
# Get provenance of all items
print_provenance_list(db.iter_provenances())

# Wikidata provenances stats

from collections import Counter
from tqdm.notebook import tqdm

c_entities = 0
c_facts = 0
c_refs = 0
ref_types = Counter()
ref_props = Counter()
ref_props_c = 0
ref_types_c = 0


def update_desc():
    return f"Facts:{c_facts:,}|Refs:{c_refs:,}"


step = 10000
for wd_id, claims in tqdm(db.iter_item_provenances(), total=db.size()):
    c_entities += 1
    for claim_type, claim_objs in claims.items():
        for claim_prop, claim_values in claim_objs.items():
            for claim_value in claim_values:
                c_facts += 1
                refs = claim_value.get("references")
                if not refs:
                    continue
                for reference_node in refs:
                    c_refs += 1
                    for ref_type, ref_objs in reference_node.items():
                        ref_types_c += 1
                        ref_types[ref_type] += 1
                        for ref_prop in ref_objs.keys():
                            ref_props_c += 1
                            ref_props[ref_prop] += 1

print("Reference node stats")
print(f"Items: {c_entities:,} entities")
print(f"Facts: {c_facts:,} facts, {c_facts/c_entities:.2f} facts/entity")
print(f"References: {c_refs:,} references, {c_refs/c_facts:.2f} references/fact")

print("\nReference stats:")
print(f"Types/reference: {ref_props_c / c_refs:.2f}")
print(f"Properties/reference: {ref_props_c / c_refs:.2f}")


def print_top(counter_obj, total, top=100, message="", get_label=False):
    print(f"Top {top} {message}: ")
    top_k = sorted(counter_obj.items(), key=lambda x: x[1], reverse=True)[:top]
    for i, (obj, obj_c) in enumerate(top_k):
        if get_label:
            obj = f"{obj}\t{db.get_label(obj)}"
        print(f"{i+1}\t{obj_c:,}\t{obj_c/total*100:.2f}%\t{obj}")


print_top(ref_types, total=c_refs, message="types")
print_top(ref_props, total=c_refs, message="properties", get_label=True)

### 3. Entities boolean search
# Find subset of entities (head entities) with information about tail entities and properties (triples: <head entities, property, tail entities>)

import time
import config as cf


def find_wikidata_items_haswbstatements(params, print_top=3, get_qid=True):
    start = time.time()
    wd_ids = db.get_haswbstatements(params, get_qid=get_qid)
    end = time.time() - start
    print("Query:")
    for logic, prop, qid in params:
        if prop is None:
            prop_label = ""
        else:
            prop_label = f" - {prop}[{db.get_label(prop)}]"

        qid_label = db.get_label(qid)
        print(f"{logic}{prop_label}- {qid}[{qid_label}]")

    print(f"Answers: Found {len(wd_ids):,} items in {end:.5f}s")
    for i, wd_id in enumerate(wd_ids[:print_top]):
        print(f"{i+1}. {wd_id} - {db.get_label(wd_id)}")
    print(f"{4}. ...")
    print()


print("1.1. Get all female (Q6581072)")
find_wikidata_items_haswbstatements([[cf.ATTR_OPTS.AND, None, "Q6581072"]])

print("1.1. Get all female (Q6581072)")
find_wikidata_items_haswbstatements(
    [[cf.ATTR_OPTS.AND, None, "Q6581072"]], get_qid=False
)

print("1.2. Get all male (Q6581072)")
find_wikidata_items_haswbstatements([[cf.ATTR_OPTS.AND, None, "Q6581097"]])

print("1.2. Get all male (Q6581072)")
find_wikidata_items_haswbstatements(
    [[cf.ATTR_OPTS.AND, None, "Q6581097"]], get_qid=False
)

print(
    "2. Get all entities has relation with Graduate University for Advanced Studies (Q2983844)"
)
find_wikidata_items_haswbstatements(
    [
        # ??? - Graduate University for Advanced Studies
        [cf.ATTR_OPTS.AND, None, "Q2983844"]
    ]
)

print(
    "3. Get all entities who are human, male, educated at Todai, and work at SOKENDAI"
)
find_wikidata_items_haswbstatements(
    [
        # instance of - human
        [cf.ATTR_OPTS.AND, "P31", "Q5"],
        # gender - male
        [cf.ATTR_OPTS.AND, "P21", "Q6581097"],
        # educated at - Todai
        [cf.ATTR_OPTS.AND, "P69", "Q7842"],
        # employer - Graduate University for Advanced Studies
        [cf.ATTR_OPTS.AND, "P108", "Q2983844"],
    ]
)

print("4. Get all entities that have relation with human, male, Todai, and SOKENDAI")
find_wikidata_items_haswbstatements(
    [
        # instance of - human
        [cf.ATTR_OPTS.AND, None, "Q5"],
        # gender - male
        [cf.ATTR_OPTS.AND, None, "Q6581097"],
        # educated at - Todai
        [cf.ATTR_OPTS.AND, None, "Q7842"],
        # employer - Graduate University for Advanced Studies
        [cf.ATTR_OPTS.AND, None, "Q2983844"],
    ]
)

print(
    "5. Get all entities that have relation with scholarly article or DNA, X-ray diffraction, and Francis Crick and Nature"
)
find_wikidata_items_haswbstatements(
    [
        # ? - scholarly article
        [cf.ATTR_OPTS.AND, None, "Q13442814"],
        # ? - DNA
        [cf.ATTR_OPTS.OR, None, "Q7430"],
        # ? - X-ray diffraction
        [cf.ATTR_OPTS.OR, None, "Q12101244"],
        # ? - DNA
        [cf.ATTR_OPTS.OR, None, "Q911331"],
        # Francis Crick
        [cf.ATTR_OPTS.AND, None, "Q123280"],
        # ? - Nature
        [cf.ATTR_OPTS.AND, None, "Q180445"],
    ]
)

Rebuild index from other Wikidata dump version

Minimum requirements:

  • DISK: ~300 GB
  • Run time: ~2 days
  1. Modify setting in config.py
  • Select DUMPS_WD_JSON version (e.g., 20220131) and DUMPS_WD_SQL version (e.g., 20220201). Modify config.py to your selections
  • Depend on your hardware, you can increase the buffer size (LMDB_BUFF_BYTES_SIZE). The default setting is 1GB.
  1. Download Wikidata dumps
python download_dump.py

We will download the three files:

  • wikidata-{JSON_VER}-all.json.gz: All content of Wikidata items
  • wikidatawiki-{SQL_VER}-page.sql.gz: Get local ID of Wikidata, and build Wikidata ID trie
  • wikidatawiki-{SQL_VER}-redirect.sql.gz: Get redirect Wikidata items

4. Build wikidb

python build_db.py
  • This will first parse wikidatawiki-{SQL_VER}-page.sql.gz and build trie mapping from Wikidata ID item to local database ID (int), e.g., Q31 (str): 2 (int). Wikidata item IDs are managed with trie. You can use the function .get_lid(wikidata_id) to get the equivalent local ID of a Wikidata item, and get back the equivalent Wikidata ID from a Local ID using .get_qid(local_id)
  • Extract redirects from wikidatawiki-{SQL_VER}-redirect.sql.gz
  • Parse wikidata-{JSON_VER}-all.json.gz and save to db

LICENSE

wikidb code is licensed under MIT License.

The LMDB lib is under OpenLDAP Public License (permissive software license)

Python binding: https://github.com/jnwatson/py-lmdb/blob/master/LICENSE

Original LMDB: https://github.com/LMDB/lmdb/blob/mdb.master/libraries/liblmdb/LICENSE