/AGLDA

Primary LanguagePython

AGLDA

Introduction

This is code of AGLDA (“Learning association characteristics by dynamic hypergraph and gated convolution enhanced pairwise attributes for prediction of disease-related lncRNAs”).

Dataset

File_name Data_type Source
dis_sim_matrix_process.txt disease-disease MeSH
lnc_dis_association.txt lncRNA-disease LncRNADisease
mi_dis.txt miRNA-disease HMDD
lnc_mi.txt lncRNA-miRNA starBase
lnc_sim.txt lncRNA-lncRNA Chen et al.$^{1}$

(1) Chen, X., Clarence Yan, C., Luo, C. et al. Constructing lncRNA Functional Similarity Network Based on lncRNA-Disease Associations and Disease Semantic Similarity. Sci Rep 5, 11338 (2015).

File

-train : data preprocessing and model training
-data : data set
-evaluation : experimental evaluation
-parasave : results and parameters

Environment

packages:
python == 3.9.0
torch == 1.13.0
numpy == 1.23.5
scikit-learn == 1.2.2
scipy == 1.10.1
pandas == 2.0.1
matplotlib == 3.7.1

Run

python ./train/preprocess.py
python ./train/train.py
python ./evaluation/plt.py